
Computer Science

A Quantitative Approach to the Formal
Verification of Real-Time Systems

Sergio Vale Aguiar Campos

September 1996
CMU-CS-96-199

&-X**

4

%^-'--'!>

"** ft'*"'

fe8p««««ran
Oft gTArragwr x I

AfipioTsd tor puoiie reieaatf

^■BCTED 5

^J

flSltfM

__ _ . , ———i

Approves tci ptisiic raieaiSI
v Diambimos Lboiamtad _^

A Quantitative Approach to the Formal
Verification of Real-Time Systems

Sergio Vale Aguiar Campos

September 1996
CMU-CS-96-199

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:

Edmund M. Clarke, Chair
Ranee Cleaveland, North Carolina State University

Daniel Jackson
John P. Lehoczky ^ QUAIJTY INgpECTBD 8

© 1996 Sergio Vale Aguiar Campos

This research was sponsored in part by the National Science Foundation under grant no. CCR-
9217549, by the Semiconductor Research Corporation under contract 95-DJ-294, and by the Wright
Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced
Research projects Agency (ARPA) under grant F33615-93-1-1330.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of NSF, the Semiconduc-
tor Research Corporation, ARPA or the U.S. government.

Keywords: real-time systems, formal verification, symbolic model checking, binary
decision diagrams, rate-monotonic scheduling, schedulability, quantitative timing
analysis, Veras language, CTL, LTL, FDDI, Futurebus, PCI Local Bus, robotics
controller, aircraft controller.

Carnegie School of Computer Science
Mellon
WJHSS*'

DOCTORAL THESIS
in the field of

Pure and Applied Logic

A Quantitative Approach to the Formal
Verification of Real-Time Systems

SfeRGIO VALE AGUIAR CAMPOS

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

f>,—i M OJLt w-lnki
THESIS COMMITTEE CHAIR DATE

/s//g/g4
DEPARTMENT HEAD DATE

APPROVED:

TS 13^ ihg/17
']DEAN ' DATE

Abstract

The task of checking if a computer system satisfies its timing specifications is extremely
important. These systems are often used in critical applications where failure to meet a
deadline can have serious or even fatal consequences. This work proposes an efficient
method for performing this verification task. The method is based on temporal logic
model checking, a technique for verifying concurrent reactive systems. In the proposed
technique, a real-time system is modeled by a state-transition graph represented by binary
decision diagrams. Efficient symbolic algorithms exhaustively explore the state space to
determine whether the system satisfies a given specification.

In addition to accepting an explicit timing constraint, and checking if it is satisfied, our
approach computes quantitative timing information such as minimum and maximum time
delays between given events. These results provide insight into the behavior of the system
as well as assist in the determination of its temporal correctness. The technique evaluates
how well the system works or how seriously it fails, as opposed to only if it works or not,
allowing a much richer analysis than previous methods. Response time to events, schedu-
lability of a task set and system performance are examples of information produced by our
algorithms. They also provide insight into how changes in the parameters affect global
behavior and allow fine-tuning of the system based on these results.

These techniques have been used in the verification of several industrial real-time systems
such as an aircraft controller, a robotics system and the PCI local bus, demonstrating that
the method proposed is efficient enough to be used in real-world designs. The examples
show how the information produced can assist in designing more efficient and reliable
real-time systems.

A Quantitative Approach to the Formal Verification of Real-Time Systems 3

Abstract

A Quantitative Approach to the Formal Verification of Real-Time Systems

"You must remember this,
a kiss is just a kiss,

A sigh is just a sigh;
The fundamental things apply,

As time goes by."

— Herman Hupfeld.

A Quantitative Approach to the Formal Verification of Real-Time Systems

Abstract

A Quantitative Approach to the Formal Verification of Real-Time Systems

Acknowledgments

To my wife Alessandra, for providing complete unrestricted support whenever I needed it,
even when I didn't deserve it. But even more important, for giving me a reason to go on,
for being the light at the end of my tunnel. There would be no reason for writing this thesis

without her.

To my advisor Edmund Clarke, for the incredible amount of time he spent with me, from
the beginning when he patiently listened to my so wrong ideas about verification to the
end when he always found the time to read and comment on the thesis. For teaching me so
much not only about formal verification, but also about all aspects of research, from writ-
ing papers that can actually be understood to grant proposals that can actually be accepted.
If I ever succeed in becoming a good researcher I will be using what he has taught me.

To Marius Minea, for the many long discussions on formal verification and all other top-
ics. For all the help with ideas on how to do things, prove the algorithms, comments and
suggestions on papers we've written and on this thesis. It's been a pleasure working with
Marius all this time, and I hope we can continue to work together.

To David Long, a former student of Ed, for the patience to explain to me everything I've
always wanted to know about model checking but couldn't find anyone with enough time
to answer. And for continuing to help with so many other questions after he left CMU by
patiently answering my e-mails and phone calls.

A Quantitative Approach to the Formal Verification of Real-Time Systems

Acknowledgments

To Oma Grumberg, for showing me a very special style of doing research. She is clear,
concise and very efficient. It is a pleasure to work with Oma, whose style I've been trying
to learn. Unfortunately, I still have a long way to go.

To many other researchers that have helped me. To Andreas Kuehlmann from IBM for the
original insight behind the optimized condition counting algorithms. To Ken McMillan,
Jerry Burch, Xudong Zhao and Somesh Jha for the many important discussions that
helped shape this work. To the Real-Time Mach group members, particularly R. Rajkumar
for many discussions about real-time systems and how to verify them.

To the members of my committee, Ranee Cleaveland, Daniel Jackson and John Lehoczky
for trying to understand all my crazy ideas and not only succeeding (in some cases better
than me), but also for helping me understand them better as well. Their comments and
suggestions have made this thesis significantly better.

To my parents Lia and Daniel and to my sister Daniela, for the help and support through-
out my whole life. Even though they have not been present during my Ph.D., without their
support I would not have been able to be here.

A Quantitative Approach to the Formal Verification of Real-Time Systems

Table of Contents

Abstract 3

Acknowledgments 7

Table of Contents 9

Chapter 1 Overview 13

Motivation 13

Verification Tools for Real-Time Systems
The Proposed Approach 18

Modeling a Real-Time System 20
The Vents Language 21
Verification Algorithms 22
Analysis of the results 25

Summary and Main Contributions 27

15

Chapter 2 Related Approaches 31

Temporal Logic Symbolic Model Checking
Computation Tree Logic 33
Symbolic Model Checking 35
Vents and Symbolic Model Checking 41

Rate Monotonie Scheduling Theory 42

31

A Quantitative Approach to the Formal Verification of Real-Time Systems

Table of Contents

The Liu and Layland Theory 42
Extensions of the Liu and Layland Theory 45
Verus and the Rate Monotonie Theory 48

Chapter 3 The Verus Language 51

Introduction 51

Overview of Veras

Veras Syntax 60

52

Chapter 4 The Semantics of Verus 65

State-Transition Graphs in Veras 65

Tracking the Control Flow — Wait Graphs 67

Core Language Semantics 71
Expressions 73
Statements 75

Verus Extension Semantics 78
The Semantics of Concurrency in Verus 82

Chapter 5 Verification Algorithms 87

RTCTL Model Checking 87
Quantitative Analysis: Minimum/Maximum Delay 89

Minimum Delay Algorithm 90
Maximum Delay Algorithm 92

Quantitative Analysis: Condition Counting 96
Minimum Condition Counting 97
Maximum Condition Counting 101

Quantitative Analysis: Optimized Condition Counting 101
Optimized Minimum Condition Counting 102
Optimized Maximum Condition Counting 106

Selective Quantitative Analysis and
Interval Model Checking 109

A tableau for LTL HI
Selective Quantitative Analysis Over Paths 116
Selective Quantitative Analysis Over Intervals 117

Interval Model Checking 120
Correctness of the Algorithms 121

Lazy Composition 136

10 A Quantitative Approach to the Formal Verification of Real-Time Systems

Chapter 6 Analyzing Real Systems 141

A Priority Inversion Example 141

An Aircraft Controller 157

A Robotics System 165

A Medical Monitoring System 170

The PCI Local Bus 175

A Distributed Real-Time System 186

Chapter 7 Conclusions 193

Chapter 8 References 199

Index 207

A Quantitative Approach to the Formal Verification of Real-Time Systems 11

Table of Contents

12 A Quantitative Approach to the Formal Verification of Real-Time Systems

Chapter 1 Overview

1.1 Motivation

In many computer applications predictable response times are essential for the correctness

of the system. Such systems are called real-time systems. They occur in many critical

applications in which a late (or sometimes early) response can have severe consequences.

Examples of such applications include controllers for aircraft, industrial machinery and

robots. Due to the nature of such applications, errors in real-time systems can be

extremely dangerous, even fatal. Guaranteeing the correctness of a complex real-time sys-

tem is an important and non-trivial task. Because of this, only conservative and usually ad

hoc approaches to design and implementation are routinely used. This leads to predictable

but inefficient designs. The use of modern software engineering techniques can improve

the efficiency of these systems without forgoing predictability. Recently, the development

of methods such as the rate monotonic scheduling theory [53,59,68] has helped increase

the popularity of formal approaches by providing designers with powerful tools for ana-

lyzing real-time systems. Current real-time designs incorporate these ideas with increasing

frequency.

Other factors make the validation of real-time and non real-time systems particularly diffi-

cult. The architecture of computer applications is becoming more and more complex each

A Quantitative Approach to the Formal Verification of Real-Time Systems 13

Overview

day. The more complex a system, the higher the possibility of errors being introduced in

its design. Moreover, performance is also becoming a more important factor in the success

of new applications. Due to competition, new products have to fully utilize the available

resources. A slow component can compromise the performance of the whole system, and

consequently its acceptance by the market. Although not traditionally associated with real-

time systems, verifying timing properties of these applications is also critical. The task of

verifying that new applications satisfy their timing specifications is more critical and diffi-

cult today than ever.

The main objective of this work is to explore the application of formal methods to the val-

idation of real-time systems. Methods such as temporal logic model checking [10,19,20]

have been very successful in validating realistic industrial designs. Model checking tech-

niques have the ability to verify designs with extremely large state spaces efficiently.

Models with up to 1020 states can be verified in minutes [10,15]. Methods such as rate

monotonic theory offer an elegant way of analyzing the performance of a real-time sys-

tem. We have developed a tool for the analysis of real-time systems by combining ideas

from both techniques. This tool allows the user to define a real-time system using a lan-

guage especially designed to simplify the description of time related characteristics. Algo-

rithms derived from model checking are used to extract quantitative properties of such a

model. This information is used to check if the system does indeed satisfy its temporal

specifications. Moreover, our algorithms provide an insight into the behavior of the sys-

tem, helping to understand and optimize its design. We believe that the use of formal

methods can increase the efficiency and reliability of systems in general, and particularly

of real-time systems. It is our hope that this work and its future extensions can contribute

to this goal and open new possibilities in the design of efficient and reliable real-time and

non real-time systems.

14 A Quantitative Approach to the Formal Verification of Real-Time Systems

Verification Tools for Real-Time Systems

1.2 Verification Tools for Real-Time Systems

Temporal Logic Model Checking

Temporal logic model checking [19,20] is an approach for the verification of concurrent

systems that has achieved significant results recently. In this technique, computer systems

are represented by state-transition graphs and specifications are written as formulas in a

propositional temporal logic. Verification is accomplished by an efficient search procedure

that views the transition system as a model for the logic, and determines if the specifica-

tions are satisfied by that model.

There are several benefits to this approach. An important one is that the procedure is com-

pletely automatic. The model checker accepts a model description and logic formulas

describing the specifications; it then determines if the formulas are true or not for that

model. If a formula is not true, the model checker can often provide a counterexample.

The counterexample is an execution trace that shows why the formula is not true. This is

an extremely useful feature because it can help locate the source of the error and speed up

the debugging process. Another benefit is the ability to verify partially specified systems

using nondeterminism. If the behavior of the component that determines the value of a

given variable hasn't been specified, the variable can be assigned any possible value non-

deterministically. The actual behavior of the variable is a subset of the modelled behavior,

and useful information about correctness can be gathered before all the details have been

determined. This allows the verification to proceed concurrently with the design.

The concept of symbolic model checking has been developed later [10,62]. In this

approach the transition relation is represented implicitly by boolean formulas, and imple-

mented by binary decision diagrams [6]. This usually results in a much smaller represen-

tation for the transition relation and set of reachable states, allowing the size of the models

being verified to increase up to more than 1020 states. By using such techniques it has

become possible to verify realistic industrial systems formally. Significant results have

been achieved, such as the verification of the Futurebus+ protocol, adopted by the U.S.

Navy [23]. That work has uncovered protocol errors that were not previously known.

A Quantitative Approach to the Formal Verification of Real-Time Systems 15

Overview

It is possible to use symbolic model checking to verify real-time systems. However, cur-
rent tools have limitations that make it difficult to perform this verification. It is difficult,

for example, to express timing properties. It is possible to express the property that "event
p will happen in the future", but it is not simple to express the property that "event p will
happen in at most n time units". Moreover, quantitative information such as response time
or the number of occurrences of events cannot be directly obtained using these techniques.

Pure symbolic model checking cannot be used in a natural and efficient way to verify

many types of real-time systems that occur frequently in practice.

Rate Monotonie Scheduling Theory
Because real-time systems are used in critical applications, until recently only conserva-
tive approaches have been commonly used in their design, leading to simple but inefficient
designs. One example of such a safe technique is static time-slicing, which divides time
equally among all tasks. Each task executes until its time slot has been used and then
releases the processor. The resulting program is very simple to analyze, but rather ineffi-
cient, since all tasks are given equal resources, regardless of their importance or resource

utilization. Recently, more powerful techniques to analyze the behavior of a real-time sys-
tem have become more popular. The rate monotonic scheduling theory (RMS) [53,59,68]
is one example. The RMS theory is applicable to systems described by a set of periodic
tasks. It consists of two components, the first being an algorithm for assigning priorities to
tasks in order to maintain predictability. This algorithm assigns higher priorities to pro-
cesses with shorter periods. Optimal response time with respect to static priority algo-
rithms is guaranteed by the RMS theory if priorities are assigned according to this rule
[59]. The second component of the RMS theory is a schedulability test based on total CPU
utilization; a set of processes (which have priorities assigned according to RMS) is sched-
ulable if the total utilization is below a computed threshold. If the utilization is above this
threshold, schedulability is not guaranteed. RMS is a powerful tool for analyzing real-time
systems. It is simple to use, yet it provides very useful information for designers.

However, this analysis imposes a series of restrictions on the set of processes. Only certain
types of processes are considered, with limitations, for example, on periodicity and syn-

16 A Quantitative Approach to the Formal Verification of Real-Time Systems

Verification Tools for Real-Time Systems

chronization. Recent work has extended this theory to more general classes of processes,

but limitations still exist [38]. Although suited to the verification of real-time systems,

RMS can only handle systems that can be described within the theory. Moreover, the types

of properties that can be verified is also restricted to properties that can be modeled as task

execution times. Verifying different types of systems such as distributed systems or sys-

tems that do not have a regular communication pattern is not a trivial task in general. The

task of checking for properties that cannot be easily expressed as task execution times

such as the number of occurrences of arbitrary events in the system can also be complex.

Other Methods
Another approach to schedulability analysis uses algorithms for computing the set of

reachable states of a finite-state system [18,35,36]. A model for the real-time system is

constructed with the added constraint that whenever an exception occurs (e.g. a deadline is

missed) the system transitions to a special exception state. Verification consists of com-

puting the set of reachable states and checking whether the exception state is in this set.

No restrictions are imposed on the model in this approach, but the algorithm only checks

if exceptions can occur or not. Other types of properties cannot be verified, unless encoded

in the model as exceptions. Even though most properties can be encoded as exceptions,

this can sometimes be difficult and error-prone. Symbolic model checking techniques

have also been extended to handle real-time systems [28,29,77]. However, these methods

as well as the others mentioned only determine if the system satisfies a given property, and

do not provide detailed information on its behavior. Restricted quantitative analysis on

discrete-time models can be performed in [27], but only to the extent of computing mini-

mum/maximum delays.

In this work we use a discrete notion of time. In recent years, there has been considerable

research on algorithms that use continuous time [1,2,34,39,41,55,63]. Most of these tech-

niques use a transition relation with a finite set of real-valued clocks and constraints on

times when transitions may occur. It can be argued that such algorithms lead to more accu-

rate results than discrete time algorithms. However, an uncountable infinite state space is

required to handle continuous time, because the time component in the states can take

A Quantitative Approach to the Formal Verification of Real-Time Systems 17

Overview

arbitrary real values. Most verification procedures based on this paradigm depend on con-
structing a finite quotient space called a region graph out of the infinite state space. Unfor-
tunately, the region graph construction is very expensive in practice and current

implementations of the algorithms can only handle quotient spaces with at most a few

thousand states. This makes it impossible to verify large complex systems such as the ones

described in chapter 6 using continuous time tools. Dense time models in which restricted

quantitative analysis can be performed can be found in [42,75].

1.3 The Proposed Approach

In this work we propose a new method for specifying and verifying real-time systems. The
system being verified is specified in the Verus language and then compiled into a state-
transition graph. Algorithms derived from symbolic model checking are used to compute
quantitative information about the model. An important benefit of this approach is that the
Verus language has been especially designed to allow a straightforward description of the
temporal characteristics of programs. Another advantage is that the information produced
allows the user to check the temporal correctness of the model: schedulability of the tasks
of the system can be determined by computing their response time; reaction times to
events and several other parameters of the system can also be analyzed by this method.

This information provides insight into the behavior of the system and in many cases it can
help identify inefficiencies and suggest optimizations to the design. The same algorithms
can then be used to analyze the performance of the modified design. The evaluation of
how the optimizations affect the design can be done before the actual implementation.

This can significantly reduce development costs.

Other advantages of our approach include the fact that the Verus code serves as a precise
description for the system, which can uncover subtle ambiguities and can be used for doc-
umentation purposes. Also, because we use a discrete notion of time, we are able to take
advantage of symbolic techniques in which the transition relation is represented by a

18 A Quantitative Approach to the Formal Verification of Real-Time Systems

The Proposed Approach

binary decision diagram. This enables us to handle systems that are several orders of mag-

nitude larger than can be handled using continuous time techniques.

Our method extends several others that have been mentioned. The model of a real-time

system, and the algorithms for exploring the state space are derived from model checking.
However, the method proposed allows the natural expression of many types of real-time
properties that cannot be easily described in the original method, such as properties that
depend on the exact timing behavior of the system. The definition of real-time system, and
of its main characteristics are derived from the rate monotonic theory. But unlike RMS,
our approach does not impose a priori restrictions on the types of systems and properties

being verified. Limitations do exist, however, due mostly to the complexity of the verifica-
tion algorithms. But they do not depend on the structure of the system, only on the amount

of time and memory required for verification.

An important characteristic of the method proposed is that it counts the number of compu-
tation steps between events, or the number of occurrences of events in an interval. Because
of this it finds application in synchronous systems in general, such as computer circuits
and protocols. Real-time systems usually do not execute in lock-step, and would not seem
to be appropriate for our method. However, they are subject to tight timing constraints,
which are difficult to satisfy in an asynchronous design. For this reason real-time system
developers often significantly reduce asynchronism in their designs to ensure predictabil-
ity. In fact, most real-time systems we have analyzed are more synchronous than tradi-
tional circuits, and have been successfully verified using the method proposed [13,14,16].

The main limitation of our approach is the inherent complexity of the model checking
problem. Constructing the model has an exponential asymptotic complexity in the number

of components and there are no guarantees that our algorithms will terminate in any prac-
tical sense. However, we have achieved good success in this area; in most cases verifica-
tion is performed in minutes, even for complex real-world systems. It must be said,
however, that these problems are inherent to formal verification of timed systems, and that

we know of no approach that has solved them.

A Quantitative Approach to the Formal Verification of Real-Time Systems 19

Overview

The remainder of the chapter gives an overview of the proposed method. We describe how
a real-time system is modeled as a state-transition graph, and present the Verus language,
used to describe the system being verified. We then briefly explain how the verification

algorithms work, and how these results can be used to analyze real systems. We conclude

the chapter by outlining the main contributions of this work.

1.3.1 Modeling a Real-Time System

A model of the system in our algorithms is a labeled state-transition graph M. The labels

correspond to the values of the variables in the program, and transitions correspond to the

passage of time in the model. The key to the efficiency of the algorithms is to use BDDs to
represent the labeled state-transition graph and to verify if the formula is true or not.

In this method transitions are represented by boolean formulas. A formula/represents a
transition between states s and s' iff the formula is true when we substitute the variable
values in states s and s' for the variables in/(using different variables for current and next

state). The formula/is represented by a BDD. Details about this representation can be

found in Section 4.1 and [8,62].

Lazy composition
In the vast majority of cases a real-time system is described by a set of processes that exe-
cute concurrently. Given the transition relation for each process, a parallel composition
algorithm constructs the global transition relation of all processes and their interaction.
The composition algorithm is essential to the verification of non-trivial real-time systems.
It is, however, extremely expensive. The number of states of a composed model can be
exponential in the number of processes. The complexity of the composition algorithm is
the main limiting factor on the size of systems being verified. We propose a new approach
in process composition called lazy composition. The basic idea is to avoid composing pro-

cesses whenever possible, performing the operation only when necessary.

20 A Quantitative Approach to the Formal Verification of Real-Time Systems

The Proposed Approach

With the new technique the composition algorithm is applied at each time the verifier

computes the image or pre-image of a state set. When computing the image of a state set S,

we are only interested in transitions that start in S. At this point the lazy composition algo-

rithm reduces the transition relations of each process by simplifying and possibly eliminat-

ing transitions that do not start in S. The resulting transition relations are often much

simpler than the original ones, while preserving all transitions that start in S. The simpli-

fied relations are then composed and the normal image computation algorithm can be

applied. Significant gains in time and space during verification can be accomplished by

this method.

1.3.2 The Verus Language

We have designed a new language to be used as the specification language for the real-

time systems verified. The main goal of this language is to allow engineers and designers

to describe real-time systems easily and efficiently. It is an imperative language with a

syntax resembling that of C. Special primitives are provided to express of timing aspects

such as deadlines, priorities, and time delays. The available data types are integer and

boolean. Nondeterminism is supported, which allows partial specifications to be

described. The language constructs have been kept simple in order to make an efficient

compilation into a state-transition graph possible. Smaller representations can then be gen-

erated, which is critical to the efficiency of the verification and permits larger examples to

be handled.

There are several other languages for specifying finite-state real-time systems. However,

they are suited for different applications, and usually only allow a natural description of

characteristics that are typical of those applications. For example, Lustre [72] and Signal

[37] are languages for describing sequential circuits. They are declarative languages, and

in this sense they resemble the SMV language [62], used for describing circuits in our

original symbolic model checker. In these languages one describes explicitly the relation-

ship between variables, but not the flow of control. Imperative languages take the opposite

approach, by explicitly describing the control flow. Declarative languages, however, do

A Quantitative Approach to the Formal Verification of Real-Time Systems 21

Overview

not provide a natural way of describing real-time programs, usually implemented on
imperative languages. In fact, our experience with SMV was the motivation for develop-

ing Veras.

Esterei [5], on the other hand, is an imperative language, better suited for describing pro-

grams. Its syntax, however, may be very unfamiliar to most designers of real-time sys-

tems, used to program in C or similar languages. Moreover, Esterel constructs, unlike

those of Veras, have not been designed to simplify modeling real-time systems. For exam-

ple, specifying the execution of a periodic process with a deadline is not as straightfor-

ward as in Veras. Finally, Esterel is a deterministic language; it does not allow the

expression of nondeterminism. Modechart [47] is another example of real-time specifica-
tion language. It is a graphical language in which nodes represent states, and transitions
are explicitly drawn between states. This language, however, is more restrictive than
Veras due to its graphical nature. Complex constructs such as periodic may be difficult
to draw. Moreover, it is an explicit state enumeration language, since individual states are
drawn in the program. Many systems are too large to be naturally described using graphi-
cal languages.

A different approach is taken in Spin [43] and Mur(p [30]. These systems use languages
that resemble C, but that have actually a significantly different semantics. Modeling a sys-

tem originally written in C in one of these systems may cause confusion between a similar
syntax, but different semantics. Moreover, both systems are better suited to verify asyn-
chronous designs. Their languages have been designed to allow the straightforward
expression of such systems. It is not clear how natural or efficient it is to write a synchro-
nous program in one of these languages.

1.3.3 Verification Algorithms

In the previous section we have described how to model a real-time system in a form ame-
nable to formal analysis. This section will describe the algorithms that perform this analy-
sis. The types of properties that can be expressed are also discussed.

22 A Quantitative Approach to the Formal Verification of Real-Time Systems

The Proposed Approach

Real-Time CTL Model Checking
Computation Tree Logic, CTL, is the temporal logic used in our verification system

[19,20]. In CTL it is possible to express properties such as "p will eventually occur", or "p

will never be asserted". However, it is not possible to express bounded properties such as
"p will occur in less than 10ms" directly. Properties such as this can only be expressed
using nested next state operators. However, the resulting formula can be very complex and
cumbersome to work with. The bounded until operator overcomes this restriction by

allowing bounds on all CTL operators to be specified [33]. It has the form: U[a^, where

[a, b] defines the time interval in which the property must be true. Informally, fU[a,b] 8is

true of some path if g holds in some future state s' on the path,/is true in all states between
state s at the beginning of the path and s', and the distance from s to / is within a and b.

All other CTL temporal operators are defined in terms of the bounded until [11]. The logic
obtained by augmenting CTL with bounded operators is called RTCTL.

The new logic allows many important properties of real-time systems to be verified. For
example, we have used it to show the existence of priority inversion [66] in a real-time
system [11]. In this example, we have modeled a simple real-time system in which pro-
cesses communicate in a non-regular pattern. The main objective is to determine which
problems can arise from this communication and how to avoid them. The bounded until
operator has allowed us to determine the existence of priority inversion, and to check that
the solution implemented, priority inheritance, avoids the problem.

We have also used RTCTL model checking in several other occasions to verify time
bounded properties of real-time and non real-time systems. Some examples include veri-
fying that an industrial communications circuit would not meet its timing
specification [78] and the verification of the generalized railroad crossing example [40].

A Quantitative Approach to the Formal Verification of Real-Time Systems 23

Overview

Quantitative Algorithms
Most verification algorithms assume that timing constraints are given explicitly in some
notation like temporal logic. Typically, the designer provides a constraint on response time
for some operation, and the verifier automatically determines if it is satisfied or not.
Unfortunately, these techniques do not provide any information about how much a system

deviates from its expected performance, although this information can be extremely useful

in fine-tuning the behavior of the system.

We present algorithms that determine the minimum and maximum length of all paths lead-

ing from a set of starting states to a set of final states. We also present algorithms that cal-

culate the minimum and the maximum number of times a specified condition can hold on
a path from a set of starting states to a set of final states. Our algorithms provide insight
into how well a system works, rather than just determining whether it works at all. They
enable a designer to determine the timing characteristics of a complex system given the
timing parameters of its components. This information is especially useful in the early
phases of system design, when it can be used to establish how changes in a parameter

affect the global behavior of the system.

Several types of information can be produced by this method. Response time to events is
computed by making the set of starting states correspond to the event, and the set of final
states correspond to the response. Schedulability analysis can be done by computing the
response time of each process in the system, and comparing it to the process deadline. Per-

formance can be determined in a similar way. The algorithms have been used to verify
several real-time and non real-time systems. Several examples of systems verified are dis-

cussed in later chapters.

Selective Quantitative Analysis and Interval Model Checking

The algorithms described above compute the minimum and maximum time delays along
every possible execution sequence of a real-time system. In many situations, however, we
may be interested in computing time delays that relate only to a subset of the execution
sequences that satisfy a given property. For example, in the aircraft controller example

24 A Quantitative Approach to the Formal Verification of Real-Time Systems

The Proposed Approach

[13] the time between requesting the activation of the weapons and their actual firing time

is computed. The maximum time in that example is infinity. The weapons may never fire

because the firing sequence can be aborted. It may be the case, however, that the designers

want to compute the maximum response time of the weapon subsystem provided that no

abort occurs.

We propose a method for specifying and verifying properties such as these. The user can

restrict the set of paths that will be considered by specifying a property that must be satis-

fied in all paths traversed. This property is expressed using linear-time temporal logic

(LTL). Special model checking techniques [22] are then used to ensure that only paths that

satisfy the formula are considered by the algorithms.

1.3.4 Analysis of the results

The power of our method comes mostly from the different types of analysis that can be

performed with the results produced by the algorithms. This section explores different

ways in which these results can be used to extract the correctness of a design, its perfor-

mance and insight into its behavior.

The basic algorithms compute minimum and maximum time delays between two state sets

start and final. We can use them to determine response time to events by applying the

algorithms to the predicates start = event and final = response. Such numbers also give

information about the correctness of a design. If the maximum is less than infinity then

event always implies response in the future:

MAX(event, response) < °° iff AG(event —» AF response)

Notice that a similar statement can associate a minimum value to the existence of a path.

This shows that our algorithms can express the same properties as these specific CTL for-

mulas. It can be argued that CTL can express more complex properties than those

described above. However, properties such as the one described are certainly some of the

most frequently checked, and this correspondence is extremely useful in practice.

A Quantitative Approach to the Formal Verification of Real-Time Systems 25

Overview

The minimum and maximum algorithms can also be used to perform the schedulability

analysis of a real-time task set. We can compute bounds on the execution time of all pro-
cesses, and check if they are within the corresponding deadlines. That also gives the user
information about the load on the system: maximum execution times close to the deadline
indicate high load. We have applied this technique to various real-time systems, such as

the aircraft controller described in [13]. Non real-time systems can also benefit from this
analysis. We can compute response time for any event in the system, and check the perfor-

mance against the specifications. These results can provide information that may have sig-

nificant impact in market acceptance when compared to the expected behavior or

competitor products. For example, a correct product may have a performance bottleneck

that may compromise the performance of the whole system. If the bottleneck cannot be

identified and corrected, the product may lose its market share due to poor performance.

We have applied this method to the verification of the PCI local bus [15].

The algorithms that count the number of times a condition occurs in a path can be
extremely useful in this analysis as well. Given a condition to be counted and two events
start and final, these algorithms compute the minimum and maximum number of times
condition holds on any path from start to final. They make it possible to determine even
more detailed information about the system. For example, in real-time systems it is possi-
ble to compute information such as priority inversion time by making start and final

'request for execution' and 'end of execution' at a certain priority level respectively, and
the condition to be counted to be 'executing at lower priority'. In non real-time systems
for example, it is possible to compute the overhead associated with processing of data by
making start a 'request for transaction\ final the 'end of transaction', and condition to be

'data being processed'.

Another way in which designers can benefit from this method is by fine-tuning the system
for optimal performance. After computing the response times for important events, the
designer can change parameters in the model and check how the response times are
affected. In this way it is possible to optimize performance by determining the effect of the
parameters on the global behavior. Even finer tuning is possible by using selective quanti-

26 A Quantitative Approach to the Formal Verification of Real-Time Systems

Summary and Main Contributions

tative analysis. For example, a very useful practice is to optimize the performance for the

most common case, while maintaining the correctness of uncommon cases. Selective

quantitative analysis can be used to restrict the model to the common cases. Optimization

can then be performed on this model. Finally, the complete system can be checked for cor-

rectness by removing the selection condition.

Several real-time systems have been analyzed using the method proposed. One example is

the aircraft controller described in [60]. This control system is characterized by a set of

real-time tasks, each controlling one subsystem of the aircraft. We have modeled this con-

trol system and analyzed it using the algorithms described. We have been able to deter-

mine the schedulability of the task set and to determine the response times for specific

events of the system such as how long it takes from the moment the pilot presses the firing

button until the weapons are actually fired.

Another example that we have analyzed is a robotics system used in nuclear plants to mea-

sure the shape of pipes by moving around them with a distance sensor [38]. We have been

able not only to determine the schedulability of this task set but also to discover inefficien-

cies in the design. The results produced by the algorithms also suggested optimizations.

The modified design has also been analyzed by the same algorithms. It has a lighter load

and data is consumed faster than in the original design.

Other systems that have been analyzed include a medical monitoring system, the PCI

Local Bus and a distributed real-time system. In all these cases we have been able to ana-

lyze the correctness and performance of the system, and in most cases optimize it using

the method proposed.

1.4 Summary and Main Contributions

In this work we propose a new method for the formal verification of real-time systems.

The method allows a detailed and accurate analysis of the behavior of the system and is

efficient enough to be used in the verification of real systems. We have used it to analyze

A Quantitative Approach to the Formal Verification of Real-Time Systems 27

Overview

several complex systems. The analysis performed using this method not only demon-
strates the correctness of the design, but in many cases it can uncover ambiguities in the

behavior that might be difficult to find otherwise.

Verus extends previous methods in several directions. It allows the natural expression of
many types of real-time systems that occur in practice via a language especially designed
to simplify the description of timing characteristics such as periods and deadlines. Previ-

ous languages cannot in general be used as efficiently because they either do not have the

primitives needed to express timing characteristics (e.g. SMV [62]), lack nondeterministic

features (e.g. Esterel [5]) or can be more restrictive than the language proposed (e.g.

Modechart [47]).

Moreover, many other verification methods such as model checking cannot directly verify
several types of properties that can be checked in a straightforward way in Verus. Time
bounds and other quantitative information such as the number of occurrences of events in
the system are examples of properties that cannot be easily obtained using standard model
checking. Analyzing the performance and determining the timing characteristics of a
model is very simple in Verus, but it is not possible (except to a very limited extent) with
traditional model checking or reachability based systems. For example, model checkers
can only check time bounded properties by expressing them using nested next state opera-
tors. The resulting formula, however, is often very large and cumbersome, and impractical
to work with. Quantitative information can be obtained by adding counters that flag the
occurrence of the event of interest, and checking that the value of the counter is within a
certain range. However, adding counters is an expensive operation, significantly increas-

ing the complexity of the verification.

Even though it allows the expression of a richer set of timing properties than standard
model checking, the rate monotonic theory is also more limited than the Verus approach in
many aspects. The description of a system verified by RMS has to fit a very rigid structure.
For example, tasks have to be periodic or to be modelled using an sporadic server (see
[70] and Section 2.2.2); synchronization has to follow protocols such as priority inherit-

28 A Quantitative Approach to the Formal Verification of Real-Time Systems

Summary and Main Contributions

ance (see [66] and Section 2.2.2) which can be very restrictive. Any deviation from this

structure has to be reformulated or the system cannot be verified. In some cases it is possi-

ble to change the system description to allow the verification, for instance, by describing

an aperiodic processes using an aperiodic server, but in many cases this is not possible.

Distributed systems represent an important class of systems in which modifying the sys-

tem description may be insufficient to correctly analyze its timing behavior. To date, RMS

has required the imposition of intermediate deadlines to analyze distributed systems [69].

However, intermediate deadlines significantly change system behavior. In Verus there are

no restrictions on the structure of the system; any Verus program can be verified. More-

over, RMS allows the expression of a very limited type of property; basically it computes

the maximum execution times of tasks in the system. Even though a large number of inter-

esting properties can be expressed using this paradigm, this may be very difficult in some

cases. On the other hand, in Verus it is possible to determine the temporal relation between

any two events in the system. For example, counting the number of occurrences of arbi-

trary events in specific intervals is a property that is simple to express in Verus, but diffi-

cult to express in RMS.

In most verification techniques it is possible to extend its expressive power by changing

the system to fit the limitations of the algorithms and verify a modified model. For exam-

ple, a counter can be introduced to represent the number of occurrences of an event, and a

CTL formula can be written stating that the counter never overflows. However, modifying

the system may introduce additional errors, or hide existing ones. Some properties similar

to those verified by Verus can be checked using model checking or RMS by introducing

modifications to the system (such as the aperiodic servers or intermediate deadlines

described). But even in these cases, one important advantage of Verus is that it allows the

verification of these properties without changing the model, ultimately performing a more

accurate analysis.

One example of a system that has been verified using Verus that might have been difficult

to verify using other techniques is the distributed real-time system described in

A Quantitative Approach to the Formal Verification of Real-Time Systems 29

Overview

section 6.6. It is a large complex system which has three main components: a network to
which audio and video sources are connected, a multi-processor bus transporting this data

and the destination processor for it. In this example, we analyze the time it takes for data
to traverse the various components of the system. The type of quantitative analysis per-
formed cannot be done directly using model checking or reachability based techniques.
The system cannot be easily described in RMS because it is a distributed system (limita-

tions on the ability of RMS to handle distributed systems are discussed in [69]). Finally,

because it is a large system, it is not likely that a continuous time method would be able to

handle its complexity.

30 A Quantitative Approach to the Formal Verification of Real-Time Systems

Chapter 2 Related
Approaches

This chapter will present the two methods for analyzing real-time systems that are most
closely related with the proposed approach: symbolic model checking and rate monotonic
scheduling. The algorithms used by Verus have been derived from symbolic model check-
ing algorithms. The analysis performed is, however, derived from the rate monotonic the-
ory. Knowledge about these methods is not a required prerequisite, but it can simplify

understanding the Verus approach.

2.1 Temporal Logic Symbolic Model Checking

Extensive simulation is currently the most widely used verification technique for finite-
state systems. However, simulation cannot usually cover all possible behaviors of a com-
puting system. Traditional simulation is too expensive, and non-exhaustive simulation can
miss important events, especially if the number of states in the system being verified is
large. Other approaches for verification include theorem provers, term rewriting systems,
and proof checkers. These techniques, however, are usually very time consuming, and
require user intervention to a large degree. Such characteristics limit the size of the sys-

tems they can verify in practice.

A Quantitative Approach to the Formal Verification of Real-Time Systems 31

Related Approaches

Temporal logic model checking [19,20] is an alternative approach that has achieved signif-

icant results recently. Efficient algorithms are able to verify properties of extremely large
systems. In this technique, specifications are written as formulas in a propositional tempo-
ral logic and computer systems are represented by state-transition graphs. Verification is

accomplished by an efficient search procedure that views the transition system as a model

for the logic, and determines if the specifications are satisfied by that model.

There are several advantages to this approach. An important one is that the procedure is

completely automatic. The model checker accepts a model description together with spec-

ifications written as temporal logic formulas and determines if the formulas are true or not
for that model. Another advantage is that, for most formulas of interest (e.g. safety formu-

las) if the formula is not true, the model checker will provide a counterexample. The coun-

terexample is an execution trace that shows why the formula is not true. This is an
extremely useful feature because it can help locate the source of the error and speed up the
debugging process. Another benefit is the ability to verify partially specified systems. Use-
ful information about the correctness of the system can be gathered before all the details
have been determined. This allows the verification of a system to proceed concurrently
with its design. Consequently verification can provide valuable hints that will help design-

ers eliminate errors earlier and define better systems.

Properties to be verified are described as formulas in a propositional temporal logic. The
system for which the properties should hold is given as a state transition graph. It defines a
model for the temporal logic since the semantics of the logic are given in terms of state
transition graphs. The model checker traverses this graph and verifies if the model satisfies
the formula. Checking that a single model satisfies a formula is much simpler than proving
that a formula is valid for all possible models. Because of this fact model checkers can be

more efficiently implemented than theorem provers. The first algorithms [19] use adja-
cency lists to represent the transition graph and have polynomial complexity in the size of

the model and in the length of the formula. These systems are able to handle graphs with

up to 105 states.

32 A Quantitative Approach to the Formal Verification of Real-Time Systems

Temporal Logic Symbolic Model Checking

Recently, more efficient algorithms have been developed using symbolic techniques. In the

new approach the transition relation is represented implicitly by boolean formulas, and

implemented by binary decision diagrams [6]. This usually results in a much smaller rep-

resentation for the transition relation, allowing the size of the models being verified to
on

increase to more than 10 states.

2.1.1 Computation Tree Logic

Computation tree logic, CTL, is the logic used by SMV to express properties that will be

verified [20]. Computation trees are derived from state transition graphs. The graph struc-

ture is unwound into an infinite tree rooted at the initial state, as seen in figure 2. The tree

is infinite because no final states are considered, only infinite paths. Paths in this tree rep-

resent all possible computations of the program being modelled. Formulas in CTL refer to

the computation tree derived from the model. CTL is classified as a branching time logic

because it has operators that describe the branching structure of this tree.

Figure 1. A state transition graph and the corresponding computation tree

Formulas in CTL are built from atomic propositions, where each proposition corresponds

to a variable in the model, boolean connectives —i and A, and temporal operators. Each

operator consists of two parts: a path quantifier followed by a temporal operator. Path

quantifiers indicate that the property should be true of all paths from a given state (A), or

some path from a given state (E). The temporal quantifier describes how events should be

ordered with respect to time for a path specified by the path quantifier. They have the fol-

lowing informal meanings:

A Quantitative Approach to the Formal Verification of Real-Time Systems 33

Related Approaches

• F/(/"holds sometime in the future) is true of a path if there exists a state in the path that

satisfies/.

• G/(/"holds globally) is true for a path if/is satisfied by all states in the path.

• X/(/"holds in the next state) means that/is true in the next state of the path.

. /U g (f holds until g holds) is satisfied by a path if g is true in some state in the path,

and in all preceding states,/holds.

Formally, the syntax for CTL can be defined by:

• Every atomic proposition p is a CTL formula.

• If/and g are CTL formulas, then so are ^f,f v g, EX/ EG/and E|/U g].

The semantics of CTL formulas are defined with respect to a labeled state-transition

graph, which is a 5-tuple M = (P, S, L, N, S0), where P is a set of atomic propositions, S is

a finite set of states, L is a function labeling each state with a set of atomic propositions, N

c 5 x 5 is a transition relation, and SQ is the set of initial states. A path is an infinite

sequence of states s0 sx s2..., such that N(st, si+]) is true for every i.

If/is true in a state s of structure M, we write M, s \=f. We write M (=/if M, s |=/for all

states s in S0. The satisfaction relation is defined inductively as follows (Given the model

M, we abbreviate M, s \=fby s \=f):

1. If/is the atomic proposition ve P, then s |=/if and only if v e L(s).

2. s \= -n/iff it is not the case that s [=/.

3. s\=fvgiffs\=fors\=g.

4. s |= EX/iff there exists a path it = s0 sl s2- starting at s = s0, such that sl \=f.

5. s\= EG/iff there exists a path % starting at s such that for every state / on 7t, s' \=f.

6. s |= E[fU g] iff there exists a path it = s0 ^ *2- starting at s = s0 and some i > 0 such

that Si [= g and for ally < i, Sj |=/.

34 A Quantitative Approach to the Formal Verification of Real-Time Systems

Temporal Logic Symbolic Model Checking

The following abbreviations are used in CTL formulas:

f A g = -.(-./v-! g)

AX/=-iEX->/

EF f=E[trueVf\

AF/=-,EG^/

AG/=-!EF^/

A[f U g] = -- E[-. g U -I/A -i g] A -, EG -. g

Some examples of CTL formulas are given below to illustrate the expressiveness of the

logic.

• AG (req -> AF ack): It is always the case that if the signal req is high, then eventually

ack will also be high.

• EF (started A -I ready): It is possible to get to a state where started holds but ready

does not hold.

• AG EF restart: From any state it is possible to get to a state where restart holds.

• AG (send -4 A[send U recv]): It is always the case that if send occurs, then eventually

recv is true, and until that time, send must remain true.

2.1.2 Symbolic Model Checking

Early model checking algorithms represent the transition graph by adjacency lists [19]. All

existing states are explicitly enumerated. However, the number of states in the model can

be exponential in the number of concurrent components in the system. This frequently

causes state explosion problems. The size of systems that can be verified is severely lim-

ited. Symbolic model checking represents states and transitions using boolean formulas.

This usually generates smaller representations, because it can automatically eliminate

A Quantitative Approach to the Formal Verification of Real-Time Systems 35

Related Approaches

redundancy in the graph. Implementing these boolean formulas as BDDs leads to very

efficient algorithms for model checking that are able to verify much larger systems than
previous ones. This section explains the symbolic model checking approach.

Binary Decision Diagrams

Binary decision diagrams (BDD) are an efficient way to represent boolean formulas.

BDDs often provide a much more concise representation than traditional representations

like conjunctive normal form or disjunctive normal form. They can also be manipulated

very efficiently [6]. Another advantage offered by BDDs is that they provide a canonical
representation for boolean formulas. This means that two boolean formulas are logically
equivalent if and only if they have isomorphic representations. It greatly simplifies the
execution of operations that are performed frequently like checking equivalence of two
formulas or deciding if a given formula is satisfiable or not. Because of all these character-
istics, BDDs have found application in the implementation of many computer aided

design and verification tools.

BDDs can be better understood by first considering how boolean formulas can be repre-
sented by binary decision trees. The nodes in the decision tree correspond to the variables
of the formula. Descendants of a node are labelled with true or false. The value of the for-
mula for a given assignment of values to the variables can be found by traversing the tree
from root to leaf. At each node the descendant labelled with the value of that variable is
chosen. Each leaf corresponds to a particular assignment to the variables, and contains the

truth value of the formula for that assignment.

This representation is not particularly compact, because it may store the same information
repeatedly in different places. BDDs are derived from binary decision trees, but their
structure is a directed acyclic graph instead of a tree. Redundant information in the struc-
ture is avoided by sharing common subtrees. As in decision trees, nodes are visited in
sequence, from root to leaf. Note that BDDs impose a total ordering in which the variables
occur in this sequence. This order is preserved for all BDDs in use at the same time. For

36 A Quantitative Approach to the Formal Verification of Real-Time Systems

Temporal Logic Symbolic Model Checking

example, the BDD shown in figure 1 represents the formula/= (a A b) v (c A d) using the

ordering a < b < c < d for the variables.

Given an assignment for the variables in/we can decide if this assignment satisfies the

formula by traversing the BDD from root to leaf. At each node we follow the path that

corresponds to the value assigned to the variable in the node. The leaf indicates if the for-

mula is satisfied or not for that particular assignment. Notice that redundancy is eliminated

in two ways. Common subtrees are not replicated, as can be seen in the figure below on

the paths when a is false and when b is false. Also, when all the leaves of a subtree have

the same value, the subtree is eliminated, and a leaf of that value is inserted at its place. In

the figure, when a and b are both true a subtree containing the variables c and d is elimi-

nated because all of its leaves would have the value 1.

Figure 2. BDD for formula (a A £) v (c A <i)

For any boolean formula there exists a unique BDD for a given variable ordering [6]. The

BDD size is critically dependent on the variable ordering. It is exponential in the number

of variables in the worst case. Given a good variable ordering, however, the size is linear

in many practical cases. Using a good variable ordering is very important, but finding the

optimal order is in itself an exponential problem. Nevertheless, there are many heuristics

that work quite well in practice.

A Quantitative Approach to the Formal Verification of Real-Time Systems 37

Related Approaches

Efficient algorithms exist to handle boolean formulas represented by BDDs. Given BDD

representations for/and g, algorithms for computing ^/and/ v g are given in [6]. Algo-

rithms for quantification over boolean variables and substitution of variable names are

also required by the model checker. It is simple to compute the restriction of a formula/

with a variable v set to 0 or 1. We will denote the restriction of/with v set to 0 by/|v=0,

and the restriction of/with v set to 1 by/l^. The formula 3v [/] is defined as/|v=0 v

/|^l, and Vv[/] is defined as -i3v[->/]• Variable substitution can be accomplished using

the quantification algorithm. f(v <- w) denotes the substitution of variable w for variable v

in formula/ It is computed as/<v <- w) = 3 v [(v <=> w) A/]. These operations are per-

formed very frequently in the model checker, and more efficient algorithms are used in the

actual system. These algorithms can be found in [8].

Representing the Model
The key to the efficiency of the algorithm is to use BDDs to represent the labeled state-

transition graph and to verify if the formula is true or not. The representation used in Veras

is the same as the one used by symbolic model checking. Details can be found in

Section 4.1 and [8,62].

By definition, time passes by one time unit at each transition. This does not restrict the

models that can be verified by the method, because non-unit transitions can be modeled as

a sequence of unit transitions. Nondeterministic transition times can also be implemented

in the same way, by using stuttering [11].

Frequently a model is described by a set of processes that execute concurrently. Given a

set of processes and a state-transition graph for each, a parallel composition algorithm is

used to construct a global transition system in which all processes execute concurrently.

Two composition models are normally implemented by model checking: synchronous and

asynchronous composition. In synchronous composition, all processes transition at the

same time, while in asynchronous composition only one transitions. In asynchronous

composition the choice of which process executes is non-deterministic and fairness is used

to avoid starvation [62]. Both models are implemented using BDDs.

38 A Quantitative Approach to the Formal Verification of Real-Time Systems

Temporal Logic Symbolic Model Checking

The composition algorithm is extremely expensive; it often generates an exponential num-

ber of states in the composed graph. However, the efficiency of symbolic model checking

and the fact that our method uses discrete time allows the use of composition in several

practical systems without state explosion problems.

Fixpoint characterization

Consider a labeled transition graph M with set of states S. We can denote a lattice of pred-

icates over S by Fred, where each predicate is identified with the set of states in S that

make it true, and use set inclusion as ordering. A functional F that maps Pred(S) to

Pred(S) is called a predicate transformer. Informally, Pred(S) is a set of states, and F is a

function from sets of states to set of states.

As described in [25], if a predicate transformer F is monotonic, it has a least fixpoint lfp

Z[F(Z)] = Ut F'tfalse) and a greatest fixpoint gfp Z[F(Z)] = n,- F\true). We can compute

both fixpoints by iteration. Starting with Z° = false (for lfp) or Z° = true (for gfp), we have

Zi+X = Z[u F(Z) for lfp and Zi+l = £ n F(Zl) for gfp. The fixpoint is found when Zl =

Zf+1. If the number of elements in Pred(S) is finite, termination is guaranteed, because

there can be no infinite sequence of Z's such that X *■ Zl+ .

We can identify each CTL formula/with the predicate {s | M,s (=/} in Pred{S) (this is the

set of states that satisfy/). Then, we can characterize each basic CTL temporal operator as

a fixpoint of an appropriate predicate transformer. The set of states that satisfy the until

operator E|/U g] is given by the least fixpoint of Z = g v (/A EX Z). Informally E[fU g]

is true at state s, if either g is true in s, or /is true in s and there exists a successor state

where E|/U g] is true. The set of states that satisfy the EG/operator is given by the great-

est fixpoint EG/of Z =/A EX Z. Informally, this means that EG/holds in a state s if/

holds in s and EG/holds in a successor state of s. Proofs that the characterizations above

correspond to the expected semantics are given in [25].

A Quantitative Approach to the Formal Verification of Real-Time Systems 39

Related Approaches

The Model Checking Algorithm
Given a CTL formula/and a model M represented as described above, the model checking

problem consists of finding the set of states in M that satisfy/. The model checking algo-

rithm is defined inductively over the structure of CTL formulas. It accepts the formula as

an argument (and M as an implicit argument), recurses over the structure of/and returns a

BDD that has one boolean variable for every atomic proposition in V. The resulting BDD

is true of a state if and only if/is true in that state. The algorithm is:

• If/is an atomic proposition p, return the BDD that is true if and only ifp is true. This is

simply the BDD for p.

• If/is -i g or g A h, use the standard BDD algorithms for computing boolean connec-

tives.

• If/is EX g, then we must verify if g is true in a successor state of the current state. EX/

is true in a state t if and only if there exists a state s such that g is true in state s, and

there exists a transition from t to s:

t\=EXg iff 3 s[g(s)AN(t,s)]

Where g(s) means the value of formula g in state s. This value can be computed using

the existential quantification algorithms described previously. g(s) is true if and only if

s \= g. However, this operation occurs frequently, and it is important to compute it in an

efficient manner; efficient algorithms for this purpose are discussed in [8].

• Iff is E[g U h], the BDD that represents the states where E[g U h] is true can be com-

puted by iterating:

E[g\Jh] = hv(gAEXE[gVh])

• If/is EG g, the algorithm is defined in a similar way. It searches for the greatest fix-

point EG g instead, and uses the following formula:

EG g = g A EX EG g

• All other CTL operators are written in terms of the ones presented.

40 A Quantitative Approach to the Formal Verification of Real-Time Systems

Temporal Logic Symbolic Model Checking

2.1.3 Verus and Symbolic Model Checking

Veras shares many important characteristics with symbolic model checking, such as the
use of symbolic algorithms implemented by BDDs. The model is represented in a similar
way, and the quantitative algorithms have similar fixpoint characterizations. The main dif-

ferences are in the way the system is specified, and in the types of results produced by the

algorithms.

Most model checkers use specification languages that have not been designed to simplify
the specification of real-time systems. In some systems, such as SMV, the specification
language simplifies the description of synchronous circuits. Writing a real-time program
in such languages is difficult and error-prone. Too much time is spent trying to accommo-
date the system into the language constructs. Other verifiers use languages better suited

for describing timing constraints such as Esterel, but they usually have an unfamiliar syn-
tax. Too much time may be spent learning the language and in trying to understand how to
represent the desired features of the system. The Verus language, on the other hand, uses a
syntax that is familiar to most real-time system designers. It also has constructs that make
it easy to express timing characteristics. Because of this, it is better suited to specify the
real-time systems that will be verified than most languages used by other model checkers.

The most important differences, however, are the results produced and their analysis.

Model checking concentrates on determining if events will or will not happen at some
point in the future. This information is essential in asserting the correctness of a model, but
it is not sufficient to assure predictability of a real-time system. Verus overcomes this lim-
itation by concentrating on the determination of time bounds between events. This infor-
mation provides important insight into the behavior of the system. The quantitative
information produced by Verus cannot be easily produced by a standard model checker or
reachability system, yet it is vital in determining the correctness of a real-time system.

A Quantitative Approach to the Formal Verification of Real-Time Systems 41

Related Approaches

2.2 Rate Monotonie Scheduling Theory

Computers have been used in critical situations for a long time. Their ability to react faster
than humans and to perform under dangerous conditions was foreseen early on. However,
it was also realized early on that the behavior of a computer system is not always simple to
predict. In some cases the interaction between the various components in the system can

cause a response to be delayed unexpectedly, making the system unpredictable. However,

unpredictable behavior is not acceptable in critical applications. Because of this a very

conservative approach was usually taken, by designing the system to support a signifi-

cantly larger load than expected. The rationale was that if enough computing power is

given to the application, the response time would be acceptable even for cases in which
unexpected delays occur. The erroneous but still common idea that being real-time is the

same as being fast may have originated at this time.

This approach is incorrect, however. In some cases it may work, because sometimes unex-
pected delays are bounded. However, there may be situations in which unbounded delays
can occur caused by problems such as priority inversion [66]. In this case a response may
never be produced. But the approach of designing the system to support larger loads is not
a good one, even in the cases where it leads to correct results. It is not scalable, and it is
very expensive in general. In order to be able to design predictable systems it is necessary
to use methods that determine a priori if the system will meet its timing requirements.
These methods must guarantee that the system is predictable, even if not necessarily fast.

2.2.1 The Liu and Layland Theory

Liu and Layland presented one of the first techniques that addressed analytically the prob-
lem of determining the predictability of a real-time system [59]. The original rate mono-
tonic scheduling theory is a subset of their work. In this approach a real-time system is
given by a set of tasks that execute periodically on a single processor. They have shown
how to schedule task execution in order to guarantee that the timing requirements will be
satisfied, and to optimize resource utilization. Their method assumes that:

42 A Quantitative Approach to the Formal Verification of Real-Time Systems

Rate Monotonie Scheduling Theory

• All tasks are periodic, that is, they execute once every t time units, where t is a parame-
ter of the task. The period of a task is a time interval of length t such that the union of
all periods partition the time line starting at time 0. Tasks execute once every period,
and are ready to execute at the start of each period. They have known, deterministic

execution times.

• The deadlines for each task are at the end of the period, that is, every execution must

finish by the end of the period. If the deadline for any period of any task is not met, an

error condition occurs and the system becomes unschedulable.

• Tasks do not suspend themselves during execution.

• Tasks are independent and can be preempted instantaneously. Preemption overhead is
assumed to be zero, that is, the context switch time is assumed to be negligible.

• There is no synchronization between tasks.

Under these assumptions Liu and Layland studied both static and dynamic scheduling
algorithms. Static scheduling assigns a fixed priority for each task, this priority does not
change. Under dynamic scheduling priorities may change in time.

Dynamic Scheduling
An example of a dynamic priority algorithm is the earliest deadline first algorithm. Under
the earliest deadline first algorithm, the process that has the closest deadline is given the
highest priority. This algorithm guarantees schedulability of task sets that utilize the pro-
cessor up to its full capacity. However, some practical problems associated with dynamic
scheduling have not been solved such as its behavior under transient overload, scheduling
of aperiodic tasks and priority granularity in communication scheduling [49]. For this rea-
son, static scheduling algorithms are more popular than dynamic scheduling algorithms.

A Quantitative Approach to the Formal Verification of Real-Time Systems 43

Related Approaches

Static Scheduling

The rate monotonic scheduling algorithm is an example of a static priority algorithm. It
assigns higher priorities to tasks with shorter periods. It is an optimal static priority algo-
rithm in the sense that if a task set can be scheduled using some static priority algorithm, it

can be scheduled using the rate monotonic scheduling algorithm.

Liu and Layland derived a sufficient condition for a task set to be schedulable by the rate

monotonic algorithm under the assumptions given above. A set of n periodic tasks xh

T2,-, tn is characterized by a period t{ and an execution time c,- for each task. The formula

ui = Ci/ti gives the percentage of the time task x,- is utilizing the processor. The formula

U=UQ + UI+...+ un gives the total processor utilization for the task set. If a task set with

n tasks has total processor utilization of at most n(21/n-l) then its schedulability is guaran-
teed under rate monotonic scheduling. For large values of n, this bound converges to
In 2 « 0.693. This is a sufficient, but not necessary condition; some task sets with utiliza-

tion higher than this bound can be schedulable.

Another important result is shown in [59]. It states that the longest response time for any
invocation of task it occurs when all tasks start executing simultaneously. The time when

all processes request execution is called critical instant. This result can be used to check
schedulability in some cases where the total utilization is higher than the bounds described
above. It is possible to guarantee that the task set is schedulable by assuming that all tasks
start execution at the same time, and checking if the deadline of the first instantiation of

each task is met.

44 A Quantitative Approach to the Formal Verification of Real-Time Systems

Rate Monotonie Scheduling Theory

2.2.2 Extensions of the Liu and Layland Theory

The assumptions made by Liu and Layland are rather restrictive. Many interesting real-

time systems cannot be described using their method. Moreover, the worst case bound of

0.693 is very pessimistic in general. Much research has been done to extend the theory.

This section will briefly overview some of this research. A more detailed presentation can

be found in [53].

Deadline not equal to Period
The situation in which the deadline of a task is not equal to its period was first considered
by Leung and Whitehead [54] in 1982. They introduced the deadline monotonic algo-
rithm, in which priorities are assigned inversely with respect to task deadline. They have
shown that this algorithm is optimal when the deadline is smaller than the period, and that
a task set is schedulable by this algorithm if the first instantiation of each task after a criti-

cal instant meets its deadline.

In [50,51,64] the case in which the deadline and the period of each task are harmonic has
been analyzed. It has been shown that under these conditions the rate monotonic and the
deadline monotonic algorithms are the same. A sufficient schedulability condition similar

to Liu and Layland's is given in [53].

Exact Schedulability Analysis
The schedulability test previously described is sufficient, but not necessary. There are task
sets that are schedulable, but fail the test. An important result is the exact analysis of the
schedulability of a task set, presented by Lehoczky, Sha and Ding [52] and by Joseph and
Pandya [48]. Let a periodic task set xh T2,..., xn be given in priority order (Tj is the highest

priority task). Under the critical instant assumption, let W0) = Sj=1 Cj\{lTJ\ be the cumula-

tive demand for processing by tasks x;-, 1 <;' < i, during the interval [0, t] (C,- is the execu-

tion time of task x,-, and 2) is its period). In other words, Wt(f) is the demand for processing

by all tasks of priority higher than or equal to x,-. The task x,- meets all its deadlines if it

A Quantitative Approach to the Formal Verification of Real-Time Systems 45

Related Approaches

meets the deadline of its first instantiation under the critical instant. This occurs if W^t) = t
s

for some time t before the deadline of Xj. Therefore, the task set is schedulable if this con-

dition holds for all tasks: Vi 3t W^t) < t. This result can also be used to show that the rate

monotonic algorithm can schedule task sets with up to 100% utilization when the periods
are harmonic.

The exact schedulability analysis also studies the average case behavior of the rate mono-

tonic algorithm. They have shown that when periods are drawn from a uniform distribu-

tion with a sufficiently wide range of values, task sets can be scheduled with total

processor utilization as high as 88 to 92% on average. Their analysis, however, is beyond

the scope of this presentation, details can be found in [52].

Task Synchronization

Synchronization of real-time tasks suffers from a serious problem, priority inversion. This
happens when a high priority task is ready to execute, but is blocked by a lower priority
task, usually because of synchronization constraints [11,66]. Consequently, the rate mono-

tonic theory assumes that no synchronization between tasks occurs. However, by studying
the priority inversion problem, it is possible to include task synchronization in the rate
monotonic theory in a consistent way.

A typical scenario in which priority inversion occurs is as follows: A high priority task A
requests access to a shared resource, which is held by a lower priority task C. It is then
blocked until C releases the resource. However, a task B, with priority higher than C but
lower than A might start executing, blocking C (and consequently A) indefinitely. This is

called unbounded priority inversion.

The problem in this case is that C is blocking A, but it is still executing at its lower priority.
A solution to the problem is to make the lower priority task inherit the higher priority
whenever blocking the corresponding task. This protocol is called priority inheritance, and
eliminates the unbounded priority inversion, making it bounded. One can then compute

46 A Quantitative Approach to the Formal Verification of Real-Time Systems

Rate Monotonie Scheduling Theory

the maximum priority inversion time as the longest possible access of the shared resource
by C, and incorporate it into the worst case execution time of A. Notice that priority inver-

sion cannot be completely eliminated in the presence of synchronization, and no inherent

inefficiency is introduced by this protocol.

The priority inheritance protocol bounds the maximum priority inversion time, but it does

not avoid deadlocks. For this reason, the priority ceiling protocol was introduced. The pri-
ority ceiling of a shared resource is defined as the priority of the highest priority task that
may access this resource. The priority ceiling protocol blocks a task trying to access a

resource S if its priority is not higher than the priority of S*, the highest priority resource
currently being accessed by another task. Whenever accessing a resource, a task inherits
the priority of the highest priority task it blocks. The priority ceiling protocol has the same
advantages of the priority inheritance protocol, and in addition, it prevents deadlocks.

More details on these protocols can be found in [66].

Aperiodic Tasks
In Liu and Layland's work, all tasks are periodic. Scheduling a mixture of periodic and
aperiodic tasks can be done, however, using the concept of aperiodic servers. Aperiodic
servers are periodic tasks that provide a resource for the exclusive use of aperiodic tasks,
which can be used on demand. To provide fast aperiodic response times, the server is
given a high priority. Two different types of aperiodic servers have been defined, the

deferrable server [71] and the sporadic server [70].

The deferrable server algorithm creates a periodic server task with execution time C,
period T and priority defined by the rate monotonic algorithm. This task has its entire
period within which it can use up to C units of execution to service aperiodic tasks. At the
end of the period any unused portion of C is discarded. The server capacity is renewed at
the beginning of the next period. By being assigned high priority, the server provides guar-
anteed response times for high priority aperiodic tasks, while maintaining predictability

for periodic tasks.

A Quantitative Approach to the Formal Verification of Real-Time Systems 47

Related Approaches

The sporadic server differs from the deferrable server in its replenishing policy. It pre-
serves its execution capacity until an aperiodic request occurs. This request then receives

immediate service, using part of the server's capacity. The server's capacity is replenished
according to the priority it is executing at. Whenever that priority level becomes active,
the replenishing time is set to the current time plus the server's period. At that point the
server capacity is replenished with the server's execution time consumed since the last

time its priority level became active.

The advantages of the sporadic server over the deferrable server are that it can be treated

just like an ordinary periodic task for schedulability tests, it can run at any priority, and

several servers at different priority levels can be defined to handle different types of aperi-
odic traffic. The analysis of the task set can be performed in a straightforward way,
because a periodic task T,- can be transparently replaced by an equivalent sporadic server

for schedulability purposes [53].

2.2.3 Verus and the Rate Monotonie Theory

Both Verus and the rate monotonic theory are methods designed to determine time bounds
between system events. However, they use very different approaches to achieve that end.
The RMS theory assumes that the system being verified satisfies certain assumptions
about its behavior such as periodicity and synchronization constraints. Systems satisfying
these assumptions behave in a more predictable way than generic systems. They can be
analyzed using analytical methods, which then provide formulas that can predict the tim-
ing behavior of this restricted set of systems. Extensions to the original theory have

expanded the class of systems that can be analyzed to include several types of systems that

occur in practice.

However, limitations still exist due to the nature of the analysis performed. Many practical
existing systems cannot be analyzed, such as systems with aperiodic activity, but in which
no aperiodic server has been introduced. In some cases the system can be forced to satisfy
certain constraints. For example aperiodic servers can be introduced in systems in which

48 A Quantitative Approach to the Formal Verification of Real-Time Systems

Rate Monotonie Scheduling Theory

not all tasks are periodic. However, in many situations this is not possible or desirable: an
existing implementation may not use aperiodic servers and it may not be possible to

change it. Verus does not have such limitations; any Veras program can be verified. For

example, an important class of real-time systems that have to be modified in order to be

analyzed by RMS is distributed systems. Intermediate deadlines have to be imposed to

make the system amenable to RMS [69]. In some cases it is not possible to modify the sys-
tem in this way; in other cases intermediate deadlines can make the system less efficient.
In Verus it is straightforward to analyze distributed systems, one example can be seen in

Section 6.6.

Another difference between Verus and RMS is the type of timing properties that can be

checked. RMS basically computes the maximum execution times of tasks in the system.
Verus allows the determination of the timing relation between any two events in the sys-
tem. It also allows a richer set of properties that include the maximum execution time as
well as minimum execution time and the number of occurrences of events in any time
interval. An example of a property that is simple to express in Verus, but not so simple in
RMS is the maximum priority inversion time: Given a high priority process P0, how much

time is spent with lower priority processes during the time P0 is requesting execution?

This can be computed in Verus by counting the number of occurrences of the execution of
lower priority processes on intervals between P0 start and PQ finish.

In spite of all these issues, RMS does have an important advantage over Verus. The algo-
rithms used by RMS have a lower complexity than those used by Verus. This is expected,
since the systems analyzed by RMS are well behaved; it is easier to predict their behavior.
Some large systems that can be analyzed by RMS may generate Verus models that suffer
from state explosion. The best approach seems to be to consider Verus and RMS as com-
plementary tools, each having specific advantages and disadvantages.

A Quantitative Approach to the Formal Verification of Real-Time Systems 49

Related Approaches

50 A Quantitative Approach to the Formal Verification of Real-Time Systems

Chapter 3 The Verus
Language

3.1 Introduction

In order to verify the correctness of a system, this system must be described in a form

amenable to the verification algorithms used. Many formal languages and notations exist

for this purpose, each one suited to a specific domain1. For example, the rate monotonic

scheduling algorithm accepts as input tasks execution times and periods. The system

description is extremely abstract, but it is expressive enough to allow system analysis.

Other languages, such as VHDL or SMV, take the opposite approach, providing a very

rich and detailed description.

Most languages simplify the description of certain types of characteristics, while possibly

complicating the expression of others. For example, the SMV language allows circuits to

be described in a straightforward way. However, the description of sequential execution is

not so simple. In fact, this observation led to the development of the Verus language, since

real-time systems are often described using a sequential programming language.

1. See section 1.3.2 for a more detailed comparison between several languages used in verification tools.

A Quantitative Approach to the Formal Verification of Real-Time Systems 51

The Verus Language

The main goal of the Verus language is to allow engineers and designers to describe real-
time systems easily and efficiently. It is an imperative language with a syntax resembling
that of the C language. Using a syntax similar to a well known language simplifies the
description of complex programs in Verus, since programmers take advantage of previous
knowledge and can master the tool faster. Forcing programmers to learn a new language

discourages the use of the tool, and often means that less people will ultimately benefit

from it.

The most important characteristic of Verus programs is time. Special primitives are pro-

vided for the expression of timing aspects such as deadlines, priorities, and time delays.
These primitives make timing assumptions explicit. A different approach is taken by many
other languages, such as C, that allow programs where timing assumptions are not clearly
stated. As a result, the specification becomes ambiguous and difficult to prove correct. The
approach taken in Verus makes the specification clearer and more complete.

The data types allowed are fixed-width integer and boolean. Nondeterminism is supported,
which allows partial specifications to be described. This guarantees that even though the

model has a finite number of states, a rich set of systems can be described. Language con-
structs have been kept simple in order to make the compilation into a state-transition graph
as efficient as possible. Simple constructs allow the precise expression of the desired fea-
tures, since complex constructs sometimes force unnecessary details into the specification.
Smaller representations can then be generated, which is critical to the efficiency of the ver-

ification and permits larger examples to be handled.

3.2 Overview of Verus

This section provides an overview of the language by presenting a simple real-time pro-

gram. This program implements a solution for the producer-consumer problem by bound-
ing the time delays of its processes. No synchronization is needed if the time delays of

producer and consumer are defined properly.

52 A Quantitative Approach to the Formal Verification of Real-Time Systems

Overview of Verus

The code for the producer process is shown below. Variable p is a pointer to the buffer

in which data is stored. The producer initializes its pointer p to 0 and the produce

variable to false. It then enters a nonterminating loop in which items are produced at a cer-

tain rate. Line 9 introduces a time delay of 3 units, after which an item will be produced.

Line 10 marks the production of an item by asserting produce. In line 11 the pointer is

updated appropriately. Line 12 makes sure that the event produce is observed. It is

needed because the state of a Verus program can only be observed at wait statements. If

a wait is not introduced in line 12, line 13 would cancel the effect of the assertion of

produce before it can be observed. This behavior is discussed in detail later.

1 producer(p)

2 int p;

3 {
4 boolean produce;

5

6 p = 0;

7 produce = false;

8 while(!stop) {

9 wait(3);

10 produce = true;

11 p = p+1;

12 wait(l);

13 produce = false;
14 };

15 }

Figure 3. Producer code

A Quantitative Approach to the Formal Verification of Real-Time Systems 53

The Verus Language

Wait Statements
An important feature of Verus is illustrated in line 9. In Verus time passes only on wait

statements. Lines 6, 7 and 8 execute in time zero and time elapses only after the loop con-

dition has been tested. This feature allows a more accurate control of time, and eliminates

the possibility of implicit delays influencing the results of the verification. It also gener-

ates models with fewer states, since contiguous statements are collapsed into one transi-

tion. Notice that this feature affects the behavior of the program significantly. For

example, a block of code not containing the wait statement executes atomically.

Nondeterminism

To illustrate another characteristic of Verus, let's assume that the producer is not

required to actually produce an item after 3 time units, but may instead leave the value of

p unchanged. This can be modelled in Verus by changing line 11 to:

11 p = select{p, p+1};

The select statement introduces a nondeterministic choice in the program. The value of

p after executing select can be either p or p+1 (addition in Verus is defined modulo the

maximum value for the variable). These choices can characterize the fact that the producer

may produce an item, but it may also not produce it. This way we can model both possibil-

ities without having to specify all the details that are actually needed to decide between

these two options. Besides hiding unnecessary details, nondeterminism can be used to ver-

ify partial specifications. Whenever the value of a variable hasn't been determined by the

design, nondeterministic constructs can specify all possible values the variable could take.

This approximates the behavior of the actual system by exploring all possibilities. As the

design process evolves, the values can be restricted until the correct behavior is deter-

mined. Nondeterminism encourages the use of automated verification in earlier phases of

the design. Components of the system can be validated before all modules have been spec-

ified. In this way errors can be uncovered before propagating to components added later in

the design.

54 A Quantitative Approach to the Formal Verification of Real-Time Systems

Overview of Verus

16 consumer(p, c)

17 int p, c;

18 {

19 boolean consume;

20

21 c = 0;

22 consume = false;

23 while (Istop) {

24 wait(1);

25 if (P != c) {

26 consume = true;

27 c = c + 1;

28 wait (1) ;

29 consume = false;

25 };

26 };

27 }

Figure 4. Consumer code

The consumer process is very similar to the producer. The basic differences are that it

waits for less time before consuming, and that it only consumes if p and c have different

values (p == c signals an empty buffer). Notice that the producer does not check if

the buffer is full before inserting another item. The time delays of both processes guaran-

tee that an overflow will never occur.

The main function

As in the C language, main has a special function in Verus. In this function all processes

are instantiated, and global variables can be declared. The variables p and c (used as

pointers in the buffer) are declared and the producer and consumer processes are

instantiated in the main function of the example code.

A Quantitative Approach to the Formal Verification of Real-Time Systems 55

The Verus Language

Process instantiation in Verus follows a synchronous model. All processes execute in lock

step, with one step in any process corresponding to one step in the other processes. Asyn-

chronous behavior can be modeled by using stuttering, as described in section 6.1. An
implicit instantiation of the main module is assumed, where the code in main executes as

another synchronous module.

Specifications can also follow the code as can be seen. The specifications below compute

the minimum and maximum time between producing an item and consuming it, as well as

checking that a produce is always followed by a consume.

28 main ()

29 {

30 int p, c;

31

32 process prod producer(p, c) ,

33 cons consumer(p, c);

34

35 spec MIN[prod.produce, cons.consume]

36 MAX[prod.produce, cons.consume]

37 AG(prod.produce -> AF cons.consume)

38

Figure 5. Producer/consumer main function

Periodic Execution.

To illustrate different features of Verus some extensions to the program above are consid-
ered. The first comes from realizing that both processes will always execute, even when no
data exists. For example, even if the producer does not generate items, the consumer
will execute. This can be avoided using periodic execution, where execution is scheduled

at specific points in time. It can be specified in Verus very easily. The producer process

can be made into a periodic process executing once every 10 time units as seen in figure 6.

56 A Quantitative Approach to the Formal Verification of Real-Time Systems

Overview of Verus

The periodic statement has four parameters, the last being the code that will be exe-
cuted periodically. The first parameter is the startjime, which specifies how many time
units the periodic code will idle before starting its execution for the first time. In this
example it will start immediately. The second parameter is the period. In this case the
statements following periodic will execute once every 10 time units. The third parame-

ter defines a deadline. It states that the execution must finish in less than 10 time units
or an exception will be raised (exception handling is discussed below). Execution may
take longer than the sum of the waits because of synchronization with other processes.

1 producer(p, c)

2 int p, c;

3 {

4 boolean produce;

5

6 p = 0;

7 produce = false;

8 periodic(0, 10, 10) {

9 wait(3);

10 produce = true;

11 p = p+1;

12 wait(l);

13 produce = false;
14 };
15 }

Figure 6. Periodic producer

Deadlines

Verus also allows the definition of deadlines independent of periodicity. For example, we
can specify that producer will be an aperiodic process, but that it must finish each itera-

tion in less than 10 time units:

A Quantitative Approach to the Formal Verification of Real-Time Systems 57

The Verus Language

1 producer(p, c)

2 int p, c;

3 {

4 boolean produce;

5

6 P = 0;

7 produce = false;

8 while(!stop) {

9 deadline(10) {

10 wait(3);

11 produce = true;

12 p = p+1;

13 wait(1);

14 produce = false;

15 };

16 };

17 }

Figure 7. Aperiodic producer

Exceptions
Exception handling is used to control abnormal situations. The only exception currently
defined in Verus is a missed deadline. It occurs when the code inside a deadline or a
periodic statement does not finish within the specified time. An exception handler
must be specified for the exception to take effect. If no exception handlers are defined, the
exception is ignored. Whenever a deadline is missed the code designated as handler is
executed. After the execution of the exception handler the rest of the code inside the dead-
line scope is ignored. Control is then passed to the statement following the deadline state-
ment. This could be the next instantiation of a periodic process when the exception occurs
inside a periodic statement or the code after a deadline statement.

58 A Quantitative Approach to the Formal Verification of Real-Time Systems

Overview of Verus

1 producer(p, c)

2 int p, c;

3 {

4 boolean produce;

5

6 handler {

7 error = 1;

8 } for {

9 P = 0;

10 produce = false;

11 periodic(0, 10, 10) {

12 wait(3);

13 produce" = true;

14 p = p+1;

15 wait(1);

16 produce = false;

17 };

18 };

19 }

Figure 8. Exception handling

Figure 8 shows the typical exception handling mechanism. Whenever a deadline is missed

an error flag is asserted. The verification procedure can then check to see if the error con-

dition is reachable. In some other applications, however, a different behavior may be the

desired one. For example, a multimedia program might choose to ignore some image

frame that hasn't arrived, provided the last n arrived. An exception handler to model this

behavior can be easily written: whenever an exception occurs, the handler would record

the number of the frame missed. If the current missed frame is at least n frames apart from

the previous one, no error would be issued. Otherwise an error condition would be

asserted.

A Quantitative Approach to the Formal Verification of Real-Time Systems 59

The Verus Language

Priorities

Priorities can also be described in Verus in a straightforward manner. In the same way that

the constructs shown above encapsulate the code they apply to,

priority(3) {

can be used to make the producer process run at priority level 3. If, for example, the

consumer runs at priority 2, then the producer will be given priority over it during

execution.

Internal and External Variables

There are two types of variables in Verus, internal and external. In both cases, there is no

default value for variables in Verus. Unless assigned a specific value, the value of a vari-

able is chosen nondeterministically from all possible values (true or false for booleans and

0..2wldth-l for integers). The two types differ, however, regarding the rules that control

when their value can change. The value of an internal variable changes only when assign-

ments are executed. External variables on the other hand model the interaction of the

model with the environment. They correspond to inputs from the outside world, and the

program has no control over their value. Assignments to external variables are not allowed

and their value can change nondeterministically at any transition of the model. The decla-

ration of external variables is preceded by the extern keyword. Internal variables are

declared without this keyword.

3.3 Verus Syntax

This section describes the syntax of Verus in more detail. Initially the basic statements and

how they combine to form a function are described. A function, much like its counterpart

in C, is a block of statements executed sequentially. Finally, it is explained how to instanti-

60 A Quantitative Approach to the Formal Verification of Real-Time Systems

Verus Syntax

ate processes using functions, and how to compose several processes in parallel. The syn-

tax presented is abstract and unnecessary details have been omitted for clarity. In

particular, lists are not formally defined. The name of an entity followed by the keyword

Jist is used to specify a list of entities of the type given. For example a list of identifiers is

denoted simply by identifier Jist. Unless otherwise specified, all lists are separated by

spaces, tabs or newlines.

The Core Language
Verus has a core subset, which defines the main characteristics of the language. The

remaining constructs are defined in terms of the core language.

• Functions

function_definition ::=
identifier (identifier Jist) declarationjist compoundjstatement

Identifier lists are separated by commas.

• Declarations

declaration ::= type_specifierdecljdentifierJist ; \
extern type_specifier decljdentifier Jist ;

type_specifier ::= boolean | int

decljdentifier ::= identifier \ identifier : constant.

Variables can be boolean and fixed-width integers. This guarantees that the model will be

finite-state. The default integer has 8 bits. In a declaration, an identifier can be followed by

the number of bits to override the default, e.g., int c; (8 bits) or int c : 4; (4 bits).

• Statements:

compound_statement ::= { statement Jist specification Jist}

A Quantitative Approach to the Formal Verification of Real-Time Systems 61

The Verus Language

statement ::= compound^statement \
expression_statement \

selection_statement \

iteration jstatement \

time_statement \

null

expression_statement ::= ; | assignment jexpression ;

selection_statement ::= if (expression) statement else statement

iteration_statement ::= while (expression) statement

time_statement ::= wait (constant)

• Expressions

assignment jexpression ::= identifier = expression |
identifier = select { expressionjist}

expression ::= expression \ \ expression \

expression && expression \

! expression |

primary jexpression ::= (expression) |
identifier \

constant

Only boolean expressions are defined in the core language. Integers variables and opera-

tions are defined in terms of booleans using binary encoding. The select expression

allows for a nondeterministic choice of values. The value returned is one of the possible

values listed, chosen nondeterministically. Expression lists are separated by commas.

62 A Quantitative Approach to the Formal Verification of Real-Time Systems

Verus Syntax

• Specifications

specification ::= spec (ctljormula) ; |

rain (expression, expression) ; |

max (expression, expression) ; |

mincount (expression, expression, expression) ; \

maxcount (expression, expression, expression) ;

Extensions to the Core Language
The constructs described below can be defined in terms of the previous ones. They sim-

plify Verus programs, but do not add to the expressive power of the language. We only

present the additions to the definitions given previously.

• Statements:
statement ::= nondeterministic_statement \ schedule_statement

selection_statement ::= if (expression) statement

nondeterministicjstatement ::= select compound_statement

schedule_statement ::=
periodic (constant, constant, constant) compound_statement\

deadline (constant) compound_statement I

handler compound_statement for compound_statement

• Expressions:
expression ::= boolean_expression | relation_expression \ int_expression

relation_expression ::= expression = = expression | expression ! = expression |

expression < expression \ expression > expression \

expression <= expression | expression >= expression

A Quantitative Approach to the Formal Verification of Real-Time Systems 63

The Verus Language

int_expression ::= expression + expression \ expression - expression |
expression * expression \ expression / expression

Process instantiation

Process instantiation occurs in the main function, using the process keyword.

statement ::= process fjnstantiationjist

^instantiation ::= identifier function_name (identifier_list)

Function instantiation lists and identifier lists are separated by commas.

64 A Quantitative Approach to the Formal Verification of Real-Time Systems

Chapter 4 The Semantics of
Verus

This chapter describes the meaning of Verus programs, or in other words, their expected

behavior. It shows how each construct in Verus relates to the state-transition model used

and how this graph is constructed from a Verus program. Understanding how Verus pro-

grams are translated into state-transition graphs is essential in order to be able to model the

system and to interpret the results of the verification correctly.

The meaning of a Verus program is a state-transition graph. Section 4.1 explains how

state-transition graphs are represented in Verus. In section 4.2 the concept of wait graphs

is introduced. Wait graphs are an abstraction used to keep track of the control flow of the

program. The formal semantics of the core language is described in section 4.3, while

section 4.4 presents the semantics of the extensions to the core language. Finally,

section 4.5 discusses the semantics of concurrent processes in Verus.

4.1 State-Transition Graphs in Verus

The state-transition graph constructed from a program PisGP = (Sp, Ip, TP), where SP is

the set of states, IP is the set of initial states and TP is the transition relation. The set of

states is defined by the variables in the program. Each possible assignment to the variables

is a state. IP and TP are defined by the program as will be seen shortly.

A Quantitative Approach to the Formal Verification of Real-Time Systems 65

The Semantics of Verus

Symbolic Representation

States are defined by the assignment of values to program variables (we assume that dif-

ferent states have different values for the variables, as described in [62]). Each possible

assignment to the program variables is a state. For example, if the program has three bool-

ean variables a, b and c, examples of states are (a,b,c), (a,b,c) and (a,b,c), where, for vari-

able v, v means the variable is true in the state, and v means the variable is false. Boolean

formulas over program variables can be true or not in a given state. The value of a boolean

formula in a state is obtained by substituting into the formula the values of the variables in

that state. For example, the formula (a v c) is true in all states shown above. The graph

representation used by Verus is a direct consequence of this observation. Sets of states are

represented by boolean formulas, where each formula represents the set of states in which

the formula is true. For example, the formula true represents the set of all states, the for-

mula false represents the empty set of states, and the formula (a v c) represents the set of

states in which a or c are true. Because symbols are used to represent states, algorithms

that use this method are called symbolic algorithms.

Transitions can also be represented by boolean formulas. A transition T{s, s') is repre-

sented using two sets of variables, one for the current state and another for the next state.

Each variable in the next state set corresponds to one variable in the current state set. If

state s is represented by the formula/^, over the current state variables, and state s' is repre-

sented by formula/^ over the next state variables, then the transition T(s, s') is represented

by the formula/,. A/S>. For example, a transition from state (a,b,c) to state (a,b,c) is repre-

sented by the formula -IöA-I6A-ICA —a' Ab' A -,C'. The transition relation of a graph is

the disjunction of all transitions in the graph. The meaning of the formula representing the

transition relation is the following: there exists a transition from s to s' iff the substitution

of the variable values for s in the current state variables and / in the next state variables of

the transition relation yields true.

In the same way that boolean formulas represent sets of states, they also represent sets of

transitions. In general, a formula can represent many transitions, making the symbolic rep-

66 A Quantitative Approach to the Formal Verification of Real-Time Systems

Tracking the Control Flow — Wait Graphs

resentation usually much smaller than an explicit enumeration of all transitions. This tech-

nique, also used in [62], is one of the reasons for the efficiency of symbolic algorithms.

The symbolic representation relies on the fact that states are represented by the values of

the atomic propositions in those states. In order to guarantee that states can be identified

uniquely, we must make the assumption that different states have different labeling of

propositions. More formally, we assume that for any two states ^ and s2 in S, if L(s\) =

L(s2) then sl = s2. This assumption does not, however, impose any restrictions on the

model, since extra atomic propositions can be added in order to make L(s{) * L(s2) for dis-

tinct states si and s2 [62].

4.2 Tracking the Control Flow — Wait Graphs

The execution of a Veras statement may change the value of one or more program vari-

ables. In general, it changes a given state s into another state s'. Executing a sequence of

statements in a given state then generates a sequence of states. However, in Veras not all

of those states are observable. The state of the program can only be observed at wait

statements. When a wait is executed all changes caused by the execution of the block of

statements since the previous wait take effect at the same time. Transitions in the graph

occur only when wait statements are executed.

a: true b: true >.

wait(l); v -*»i«"'-i1* ' S°

a = false;
c = true;
d = d + 1;

wait(l); /" a: false b: true X
v. c: true d: 14 J X

Figure 9. Wait statement example: if s0 is the current state at the first wait,

si will be the current state at the second.

A Quantitative Approach to the Formal Verification of Real-Time Systems 67

The Semantics of Verus

Each transition in the graph corresponds to time elapsing by one unit. The statement

wait (1) corresponds to one transition in the graph. Longer waits are modeled by a

sequence of unit transitions. This allows the programmer to specify exactly when time

passes, and permits a more accurate model of time than possible if each statement takes

one time unit to execute.

It is easier to understand the behavior of a Verus program by concentrating on its wait

statements. This can be accomplished by translating the program into a wait graph. The

wait graph corresponding to a Verus program is a graph in which the states are the wait

statements in the program. It corresponds to an intermediate representation between the

Verus program and the corresponding state-transition graph. It is used only to illustrate

how this translation occurs and is not actually constructed. In the discussion below, to dif-

ferentiate between distinct waits, wait,- represents the ith occurrence of a wait statement

in the program. Subscripts have been added to the sample program below to aid the pre-

sentation, but no subscript exists in actual programs.

As discussed, each wait in the program is a state in the wait graph. Transitions between

waits are defined as follows. A transition between wait; and wai t;- exists iff waity can

be reached from wait,- in the control flow of the program without going through interme-

diate waits. The edges of the wait graph are labelled by a relation Ttj between any two

states in the state-transition graph. This relation describes the state changes caused by the

execution of the statements between the corresponding waits. The construction of this

relation is described in the next section. Intuitively, given two states s and s', Ttfs, s')

means that if the execution of the program is in wait, and the current state is s, then there

exists a path in the control flow leading to wait, (without intermediate waits) and the exe-

cution of the statements on this path will change state s into state /.

Notice that Ty represents exactly all transitions from s to s' in the state graph such that s

and s' are respectively the current state of the program before and after control is trans-

ferred from wait; to wait,-. This makes it possible to construct the state transition graph

68 A Quantitative Approach to the Formal Verification of Real-Time Systems

Tracking the Control Flow — Wait Graphs

that corresponds to a given Veras program from its wait graph. The set of all relations

between wait statements represents all transitions in the program. Consequently, the dis-
junction of all such transitions constitutes the transition relation of the state-transition

graph of the program.

001 waited);

002 SI;
003 while condl {
004 if cond2 {

005 S2;

006 wait2(D;

007 S3;
008 } else {
009 S4;
010 wait3(l);

011 S5;
012 } ;
013 S6;
014 wait4(l);

015 } ;

wait

wait3 wait2

(S,s correspond to blocks of assignments)

Figure 10. A Veras program and its corresponding wait graph

Wait Counters

Since each relation Ttj corresponds to a set of transitions, their disjunction should corre-

spond to the transition relation of the program. However, this is not true because Ttj- does

not contain information about where it came from (wait,) and where it leads to (waity).

The disjunction of all relations would not maintain consistency of the values of variables

after the execution of a sequence of waits.

This problem is solved by creating an extra variable in the program to record this informa-
tion, the wait counter wc. Each wait statement is preceded by an assignment wc = i,
where i is the occurrence number of the wait statement (this assignment is introduced by
the compiler; it is not part of the source code). The relation 7» now contains information

A Quantitative Approach to the Formal Verification of Real-Time Systems 69

The Semantics of Verus

about where it leads to, since the assignment wc = j is introduced before waity. As

detailed in the next section, the previous value of the wait counter indicates where this
transition came from. Now Ty has all information needed to maintain consistency across

sequences of wait statements, and the disjunction of all relations between waits is the

transition relation of the program.

Determining the Initial State Set

The initial state set of a Verus program is the state it reaches just after executing the first

wait. In order to compute the initial state set, Verus programs start with an initial wait,

with the wait counter of 0 (introduced by the compiler). The state of the program at this
point, S0, is represented by the formula (wc = 0). The initial state set is defined as the set of

states reached from S0 in one transition.

In S0 all variables (with the exception of wc) have nondeterministic values. In the initial

state only those that have been assigned before the first wait in the program will have
fixed values. The difference between defining the initial state set as S0 or as the states

reached from 50 in one step is a subtle consequence of this fact. The difference can be seen

in the program below:

1 main()
2 {
3 boolean a;
4
5 a = true;
6 while(true) {
7 wait(1);
8 };
9

Figure 11. Initial state set example

70 A Quantitative Approach to the Formal Verification of Real-Time Systems

Core Language Semantics

The specification (AG a) is false if the initial state set is S0, because the state set repre-

sented by (wc = 0 A -a) is part of S0, that is, a could be false in the initial state. However,

this behavior can be confusing to programmers, since it is not intuitive from the program

source. Defining the initial state set as the set of successors of S0 solves this problem. For

the program above the initial state set is (wc = 1 A a), which models the expected behavior.

4.3 Core Language Semantics

This section formally defines the meaning of a Veras program. It explains how the rela-

tions between waits are constructed, and formalizes the construction of the state graph

that models a Veras program.

The state space of a Veras program is defined by a set of boolean variables. A state in the

model is an assignment of values to the variables. The set of all states is ST. A relation

between any two states belongs to Relation = Powerset(ST x ST).

The semantics is defined as a function of the program text. The meaning of a program is a

transition relation between states such that there is a transition from state s to state s' iff

there exists an execution sequence leading from wait; to waity without intermediate

wait statements that changes state s into state s'.

The function R given below constructs the relations between wait statements. Intuitively,

given a relation r describing the program until the execution of statement Stmt, the func-

tion R will produce the relation r describing the program after executing Stmt. The func-

tion R also constructs another relation t by accumulating the relations constructed for all

wait statements. Function R is defined by

R: STMT -» Relation x Relation -* Relation x Relation

A Quantitative Approach to the Formal Verification of Real-Time Systems 71

The Semantics of Verus

where pairs of relations are (r, t), r being the relation containing changes to the program

state since the last wait statement, and t being the transition relation of the program, that

is, the disjunction of the relations between all pairs of wait statements.

The state-transition graph corresponding to a program P is constructed as follows. Given

progräm P, function R constructs (r, t) = RlPM™c = °> 0>>where f is the transition relation

of the state-transition graph corresponding to P, and the initial state set is constructed from

t as discussed above.

Additional definitions are needed before presenting the semantic functions:

• There are only boolean variables in the program. Integer variables are encoded in

binary and substituted for the corresponding boolean variables.

• V and V are two sets of boolean variables such that for each variable v in the program

there are corresponding variables v e V and V e V. The variable veV represents the

value of the program variable v in the current state, and the variable V e V represents

its value in the next state. A transition is a relation between variables in V and V.

• A variable wc is introduced in the model. It is used to keep information about the previ-

ous and next wai t statements in the control flow. An assignment wc = i; is assumed

to exist just before statement waitj.

• An initial wait (with wait counter value of 0) is the second statement of the program,

preceded by an assignment wc = 0.

• All programs are assumed to have as the last statement:

while (true) wait(l);

There are two reasons for this requirement. Transitions are only generated at wait

statements (see Rl wait]]) and the existence of a final wait guarantees that transi-

tions will be generated for all programs. Moreover, this loop also guarantees that even

when the program terminates and no more statements are executed, the state of the pro-

gram can still be observed. Intuitively the loop means that after the program terminates

its state will remain unchanged.

72 A Quantitative Approach to the Formal Verification of Real-Time Systems

Core Language Semantics

4.3.1 Expressions

The meaning of a Verus expression is a boolean formula corresponding to the syntactic

expression. Since the core language only allows boolean expressions, the translation is

straightforward; it is described below by the function E:

Primary Expressions

El true I = true

El false]] = false

El v 1 = v', where v is an internal variable and V e V.

El v]] = v, where v is an external variable and v e V.

Internal variables are represented by their next state value, while external variables are

represented by their current state value. This choice of representation significantly affects

the behavior of each type of variable, as described below.

First, lets consider how internal variables behave. All references to an internal variable

will be denoted by its next state variable. For example, a reference to variable v on the

left-hand side of an assignment (as in v = false) will be denoted by the next state vari-

able v, and therefore the assignment will change the value of V in the current relation (see

semantics of assignments). This is the expected behavior, since an assignment determines

the value of the variable in the next state.

However, other references to v (as in x = ! v) also refer to v'. In the assignment x = ! v

the value of x' in the current relation will be assigned the negation of the value of V. Two

cases must be considered. If variable v has been assigned a value previously, this assign-

ment has updated the value of V in the current relation. Consequently, the assignment to x

uses the most recent value assigned to v. To illustrate how this affects the behavior of the

program, consider the program fragment below. The value assigned to x in line 4 is false,

because in the current relation of the program at line 4 the value of variable v is true.

A Quantitative Approach to the Formal Verification of Real-Time Systems 73

The Semantics of Verus

1 v = false;
2 wait(l);
3 v = true;
4 x = !v;

Figure 12. Example of the behavior of internal variables

In the case where variable v has not been assigned any value, the current relation enforces

that the value of internal variables do not change via the clause (Av e internai variablesv = v')

introduced in the current relation at wait statements (see 7?[[wait]]). This clause guaran-

tees that the current and next state variables of internal variables have the same value (the

clause is automatically overridden if an assignment is made). This has the effect that the

value of an internal variable does not change if no assignments are made. This is true even

across waits. For example, if line 3 did not exist in the fragment above, the value of V

would be false in the current relation because of this clause, and therefore the value

assigned to x would be true.

External variables, on the other hand, are not included in the wait statement clause intro-

duced in the current relation. This is because their value is not maintained across wait

statements. External variables may change value nondeterministically at wait statements

and they cannot be assigned to. The value an external variable has at any point in the pro-

gram is the value it had in the previous wait statement, since no assignments exist. This

value is represented by its current state variable.

Boolean Expressions

Eg exprx | | expr2 J = expr^ v expr2

£1 exprx && expr2]] = exprx A expr2

£[[! expr J = -i expr

74 A Quantitative Approach to the Formal Verification of Real-Time Systems

Core Language Semantics

4.3.2 Statements

Assignments

Rlv = exprlL(r,t) = ((3y[v = Expry/vAry/v]),t),

where v = El v J, Expr = E\[expr J and y is a new variable.

This expression computes the strongest post-condition for the assignment v = expr given

r as a pre-condition. If r is the set of valid transitions in the graph since the last wait

statement, the expression above determines the largest set of transitions that satisfy the

assignment and that satisfy r for variables other than v. Intuitively, this expression substi-

tutes the previous value of v in r for Expr, while maintaining the values of other variables.

i?[v = select {exprx, expr2} W,t) = let {r',t) = Rl v = exprx\(r,t),

(r",t) = Rgv = expr2J{r,t)m

(rvr",t)

The relation for a nondeterministic assignment is the disjunction of the expression for

each possible assignment. In other words, a nondeterministic assignment is true if any

possible value is assigned. The extension of R for the case in which more than two expres-

sions exist is a simple extension of the disjunction shown, and is omitted for brevity.

Sequential Execution

Rl Si ; S2]|<r, t) = Rl S2 J(i?I Sx J<r, f»

Wait Statements

Rl wait,- (1) !<r, t) = (((wc = i) A AV e IV v = v'), (t v r)>,

where IV is the set of internal variables in the program.

Function R for the wait statement changes the previous relation in two ways. At this

point in the program transitions that lead to wait,- are generated. These transitions are

A Quantitative Approach to the Formal Verification of Real-Time Systems 75

The Semantics of Verus

represented by relation r before the wait is executed, which is then disjointed with the

previous transition relation t. This is the only statement that changes the value of t.

Moreover, the current relation after the execution of wait,- must reflect the fact that a new

set of transitions will be computed. The new relation specifies that transitions start in
wait,- with the formula (wc = i), that is, the wait counter value of the current state variable

in the transition will be i. The destination of the new set of transitions will be established

when the next wait statement is found. At that point the assignment wc = j before wait;-

introduces the formula (wc' = f) in the current relation, specifying where the transition

leads to. Because of these two conditions, all transitions specify a value for both the cur-

rent and next state wait counters.

Finally, it is necessary to introduce the expression Av e IV v = v into the current relation.

For internal variables this expression guarantees that unless assigned a new value, internal
variables maintain their previous value across transitions. External variables may change
value during transitions, and therefore are not included in this expression. This allows the
use of the next state variable as the semantic value of internal program variables. When-
ever an internal variable is referenced, its next state variable will have its previous value
(via the clause v = V above) or its new value (via the assignment expression described

previously) in the current relation.

The expression above handles only unit waits. Longer waits are modeled by a sequence of

unit wait statements.

Conditionals

Rl if cond Sl else S2 I<r, f> = let (/, f) = Rl SY Mr A cond), t),

(/', t") = Rl S2 Mr A -icond), t) in

(/ v r", t' v t")

76 A Quantitative Approach to the Formal Verification of Real-Time Systems

Core Language Semantics

Each branch in the if statement is executed by restricting its parameter to the set of tran-

sitions that satisfy the appropriate conditional — Sj receives those transitions satisfying

cond, and S2 receives transitions not satisfying cond. In this way, if control reaches the if

statement through a state that satisfies the condition, control will proceed to Sv If the state

does not satisfy the condition, control proceeds to S2- The representation of a conditional

is the disjunction of the representation of its branches.

Loops

Rl while cond Si I<r, t) = let (/, t') = Rl while cond Si !(/?[[Sj J<(r A cond), t)),

{r", t") = <(r A -ncond), t) in

</ v r", t' v t")

The representation of a while loop can be seen as unrolling the loop into nested if state-

ments: i f cond {Si; if cond {52;...}};. However, even though simple to understand,

function R for a while statement cannot be computed as shown above, because it is cir-

cular. A more accurate definition can be seen below. It uses the ./be operator, which returns

the least fixpoint of the functional given as its argument.

Rl while cond Sx I =fixQfk{r,t). let (/, f) =/(/?[[Sx]|<(r A cond), t)),

(/', t") = <(r A -icond), t) in

(/ v r", t' v t"))

The operations performed by the functional above are projection (from the result of the

application of/into r and t'), disjunction (of /, r" and t', t") and pairing (of the results of

the disjunctions). Since these operations are continuous [76], any functional constructed

from them is also continuous. By being continuous, the functional is also monotonic, and

therefore it has a fixpoint.

However, not all programs with while statements have well behaved semantics. For exam-

ple, a fixpoint characterization for the program below is the relation false, which corre-

A Quantitative Approach to the Formal Verification of Real-Time Systems 77

The Semantics of Verus

sponds to non-termination, as is expected from the program. But since there are no waits

in the program, time does not pass. Non-termination in this case means that if the program

is in state s when the code below is executed, there will be no outgoing transition from s,

that is, the non-terminating behavior is not observable. In order to avoid this anomalous

behavior, we impose the rule that all execution sequences inside all whiles in the pro-

gram must execute at least one wait statement. This ensures that even non-terminating

while programs are always observable and that no states without outgoing transitions

will be created.

1 while(true) {
2 a = !a;
3 }

Figure 13. A while program with a trivial fixpoint

Null Statement

Rl null I<r, t) = (r, t)

4.4 Verus Extension Semantics

If Statement

selection_statement ::= if (expression) statement

The if statement is a simple extension of the if-then-else statement, it is simply translated

as: if (expression) statement else null

Non Deterministic Statement

nondeterministic_statement ::= select compound_statement

78 A Quantitative Approach to the Formal Verification of Real-Time Systems

Verus Extension Semantics

The statement select {S^, S2',— ', Sn} has the intuitive meaning of a non deterministic

choice of execution between the statements in the compound statement. It corresponds to:

extern int s;

if (s == 1) Si else

if (s == 2) S2 else

Schedule Statements

schedule _statement ::=

deadline (constant) compoundjstatement

The deadline statement is translated into the Verus core language by creating an integer

variable timer. At the deadline keyword an assignment timer = 0 is inserted.

Within the scope of the deadline, each wait (n) statement is preceded by timer =

timer + n; and by a check i f (timer >= deadline) error_code, where the excep-

tion handler defines error_code.

schedule_statement ::=

periodic (constant, constant, constant) compound_statement

The periodic statement is handled in a similar way. The difference is that an infinite loop is

inserted enclosing the periodic statement, and once the periodic statement has finished

executing, a loop is inserted to enforce the periodicity:

while (timer < period) {

timer = timer + 1;
wait(1);

};

A Quantitative Approach to the Formal Verification of Real-Time Systems 79

The Semantics of Verus

A similar loop is inserted before the main loop at the beginning of the periodic statement

to account for the initial offset.

Exception Handling

schedulejstatement ::=
handler compound_statement for compoundjstatement

The first compound statement is the exception handler, and the second is the scope of the

handler. The exception handling statement handler Sx for S2 is translated by substitut-

ing the error_code created by deadline statements in S2 for: 5X else {. The compound

statement S^ is executed in case of a missed deadline, and the else clause guarantees that

the rest of the deadline statement is skipped in case of a missed deadline. The { after

the else is closed at the end of the deadline statement.

For example, the periodic producer described in the previous chapter is translated into the

core language as seen below:

1 producer(p, c)

2 int p, c;

3 {
4 boolean produce;

5

6 handler {

7 error = 1;

8 } for {

9 p = 0;

10 produce = false;

11 periodic(0, 10, 10) {

12 wait(3);

13 produce = true;

80 A Quantitative Approach to the Formal Verification of Real-Time Systems

Verus Extension Semai itics

14 P = P+1;
15 wait(1);

16 produce = false;

17 } /

18 }

19 }

Figure 14. Original periodic producer

1 producer(p, c)

2 int p, c;

3 {

4 boolean produce;

5 int timer;

6

9 P = 0;

10 produce = false;

11 while (true) {

12 timer = 0;

13 timer = timer + 3;

14 if (timer > 10) {

15 error = 1;

16 } else {

17 wait(3);

18 produce = true;

19 p = p+1;
20 timer = timer + 1;

21 if (timer > 10) {

22 error = 1;

23 } else {

24 wait(1);

A Quantitative Approach to the Formal Verification of Real-Time Systems 81

The Semantics of Verus

25 produce = false;

26 };

27 };

28 while (timer < 10) {

29 timer = timer + 1;

30 wait(1); .

31 };

32 };

33 }

Figure 15. Periodic producer in the core language

Integer expressions and operations

These operations are translated into boolean equivalents by using a binary encoding of

integers. Since all integers have fixed-width, this is a straightforward translation.

4.5 The Semantics of Concurrency in Verus

Up to this point we have seen how a single process in Verus is translated into the corre-

sponding state transition graph. But more frequently than not real-time systems are

described by a set of concurrent processes instead of a single one. It is possible to specify

concurrent processes in Verus using the process keyword. This section describes how

the behavior of parallel processes is defined in Verus.

Synchronous Composition

Given a set of processes defined by their state transition graphs, it is possible to construct

a global state transition graph corresponding to the environment in which all processes

execute concurrently. The concurrency model implemented in Verus is synchronous, that

is, one transition in the global model corresponds to exactly one transition in each process.

82 A Quantitative Approach to the Formal Verification of Real-Time Systems

The Semantics of Concurrency in Verus

Given two processes defined by their state transition graphs Gx = (Sh I\,T{) and G2 = (S2,

I2, T2) we can construct a global state transition graph G = (S, I, T) by:

• S = {(sh s2) | sl e Sh s2 € S2 and ^(v) = s2(v), for all shared variables v}

where s(v) denotes the truth value of variable v in state s.

Each state in the global model contains one component in each process. However, one

constraint must be satisfied. If a variable is referenced in more than one process, its

value in each component of the global state space must the same. This model guaran-

tees consistency of the values of shared variables.

• / = {(i'i, h) I *i e Ih i2 e I2 and (ih i2) e 5}

An initial state in G is a state in the global model that is an initial state in all processes.

. T((sh s2), (th t2)) iff Tx(Sl, ti) and T2(s2, t2)

A transition in the global model exists iff it corresponds to existing transitions in each

component. Symbolically T is constructed by conjuncting T\ and T2. The meaning of

the formula representing the global transition relation is that a transition exists if transi-

tions exist in all components.

This construction allows the specification and verification of systems in which several

processes execute concurrently. The synchronous model can be relaxed using stuttering,

as discussed in section 6.1. This model is expressive enough to allow the description of

most types of practical systems.

Prioritized Composition
Real-time systems frequently use priorities to ensure that critical processes are not delayed

by less important ones. Priorities are needed whenever there is contention for resources in

the system, such as the processor. A scheduler is used to decide which process accesses

the resource at any time, and a real-time scheduler uses priority information to decide the

access order for the resource.

A Quantitative Approach to the Formal Verification of Real-Time Systems 83

The Semantics of Verus

In Verus the scheduler can be implemented in the core language to model this behavior.

Both static and dynamic priority schedulers can be implemented. A static priority sched-

uler can be seen below. The scheduler receives requests from each process (via the reqz

variables), and asserts the variable granted, which signals its decision about which pro-

cess executes next.

1 scheduler(reql, req2, req3, granted)

2 boolean reql, req2, req3;

3 int granted;

4 {
5 while (true) {

6 if (reql) granted = 1; else

7 if (req2) granted = 2; else

8 if (req3) granted = 3; else

9 granted = 0;

10 wait(l);

11 };

The scheduler chooses which process executes next by following the nested if structure.

The order in which the requests are tested define the priority order used.

Whenever requesting execution, process pi sets variable reqi to true. When it finishes

executing it resets the variable. During execution it must wait until the variable granted

has its index before proceeding:

12 /* Beginning of execution */

13 reql = true;

14 while (granted != 1) wait(l);

15 wait(l); /* execute for one time unit */

16
17 while (granted != 1) wait(l);

18 wait(l);

84 A Quantitative Approach to the Formal Verification of Real-Time Systems

The Semantics of Concurrency in Verus

19 /* End of execution */

20 reql = false;

21 wait(l);

Dynamic scheduling can also be implemented. In this case the reqf variables are integers

and contain the priority level at which the process is requesting execution. One way of

defining the values for the req* variables is to use the priority statement. The state-

ment priority (n) {Sj }; is translated to:

reqj = n;

Si:

reqi = 0 ;

This can be easily generalized. For example the earliest deadline scheduling algorithm can

be implemented by assigning to the request variable the difference between the current

time and the deadline. The scheduler now must choose the process with the highest

requested priority:

1 scheduler(reql, req2, req3, granted)

2 int reql, req2, req3, granted;

3 {

4 while (true) {

6 if (reql >= req2) {

7 if (reql >= req3) granted = 1; else

8 granted = 3;

9 } else {

10 if (req2 >= req3) granted = 2; else

11 granted = 3;

12 };

13 wait(l);

14 } ;

A Quantitative Approach to the Formal Verification of Real-Time Systems 85

The Semantics of Verus

Many different schedulers can be written to suit specific applications. For example, the
scheduler above always favors the process with the lower index in case of equal priority
levels. In some cases this might not be desirable, and the scheduler has to be refined to

reflect this feature of the system.

Notice that issues such as fairness, absence of deadlocks and starvation depend on the spe-

cific scheduler being used. For example, it can be easily seen that fairness is not guaran-

teed by the schedulers described above. They always favor higher priority processes, and

may starve lower priority ones. However, this is allowed in real-time resource manage-

ment, and the schedulers are correct. Different schedulers may have different require-
ments, and these issues have to be considered again if new schedulers are introduced.

Prioritized composition allows the specification of many common types of real-time sys-
tems in a straightforward way. In fact, most of the examples described in the next chapter

have been implemented using this paradigm.

86 A Quantitative Approach to the Formal Verification of Real-Time Systems

Chapter 5 Verification Algorithms

Previous chapters have described how to specify a real-time system, and how to generate,

from the specification, a model that is amenable to a formal analysis. This chapter will

describe in detail the algorithms used to verify real-time systems in Verus. The simplest

method consists of introducing time bounds on CTL operators. Later more powerful algo-

rithms will be explored that introduce quantitative and path selective analysis methods

into the Verus tool.

5.1 RTCTL Model Checking

Symbolic model checking algorithms are able to verify a large and important class of

properties of computer systems in general. Properties such as liveness and safety can be

easily expressed and verified. However, there is an important class of properties that can-

not be adequately handled using this method. This class consists of the properties which

place bounds on response time. In CTL it is possible to state that some event will happen

in the future, but the property that some event will happen at most x time units in the

future cannot be expressed directly.

A Quantitative Approach to the Formal Verification of Real-Time Systems 87

Verification Algorithms

A simple and effective way to allow the expression and verification of time bounded prop-
erties is to introduce bounds in the CTL temporal operators. The extended logic is called

RTCTL [33]. The expressive power of RTCTL is the same as CTL, since the bounded
operators can be translated into nested applications of the EX (or AX) operators. How-

ever, this translation is often impractical, and RTCTL provides a much more compact and

convenient way of expressing such properties.

The basic RTCTL temporal operator is the bounded until operator which has the form:

U[fl by where [a,b] defines the time interval in which the property must be true. We say

that/U[a £,] g is true of some path if g holds in some future state s on the path,/is true in

all states between the beginning of the path and s, and the distance from this state to s is
within the interval [a,b]. The bounded EG operator can be defined similarly. Other tempo-

ral operators are defined in terms of these.

More formally, we extend the CTL semantics to include the bounded until operator by

adding the following clauses to the formal semantics given in section 2.1.1:

7. s \= E\fV[ab] g] iff there exists a path K = S0SI S2 ... starting at s = s0 and some i such

that a<i<b and s{ \= g and for ally" < i, sj \=f.

8. s \= EG[afc]/iff there exists a path n = s0s1 s2 ... starting at s = sQ and for all i such that

a<i<b, Sj (=/.

As an example of the use of the bounded until consider the property "It is always true that
p may be followed by q within 3 time units". This property can be expressed in RTCTL as
AG(p -» EF[0 3] q). The bounded F operator is derived from the bounded until just as in

the unbounded case, i.e. EF[afo]/= E[true V[a^f\.

In order to implement this operator, we will use a fixpoint computation that is similar to

the one implemented in CTL model checkers. It is easy to see that the formula E\f\J[a^ g]

can be expressed in the form:

88 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Minimum/Maximum Delay

if a > 0 and b > 0: E\fV[aJf] g] =/A EX E\fV[a.lM] g]

else, if b > 0: E[f U[0,fc] g] = £ v (f A EX E[f U[0,M] *])

else: W U[0,0] g] = *

Other operators are defined similarly.

Consider the first of these cases. We compute the sets of states where/is true for a steps.
During this computation, a fixpoint may be reached before a iterations have passed. When
this happens, we can skip to the second case. By using this optimization, the number of
required iterations may be reduced when the time interval is large, but a fixpoint is reached
quickly. The same optimization can also applied in the second case. If a fixpoint is reached
before b - a iterations, with b and a being respectively the upper and lower bounds of the

operator, we can immediately proceed to the third case.

5.2 Quantitative Analysis: Minimum/Maximum Delay

Traditional formal verification algorithms assume that timing constraints are given explic-
itly in some notation like temporal logic. Typically, the designer provides a constraint on
response time for some operation, and the verifier automatically determines if it is satis-
fied or not. These techniques do not provide any information about how much a system
deviates from its expected performance, although this information can be extremely useful

in fine-tuning the behavior of the system.

This section describes algorithms to compute quantitative timing information, such as
exact minimum and maximum delays on the time between a request and the correspond-
ing response. We also present algorithms that compute the minimum and maximum num-
ber of times a certain condition is satisfied on all paths between two given events. For
example, we can use these algorithms to bound the time between asserting a bus request
and the corresponding bus grant. In addition, we may need to compute the number of
times a third event occurs within such an interval, such as the number of times other trans-
actions are issued between the bus request and the corresponding grant.

A Quantitative Approach to the Formal Verification of Real-Time Systems 89

Verification Algorithms

5.2.1 Minimum Delay Algorithm

The algorithm takes two sets of states as input, start and final. It returns the length of (i.e.

number of edges in) a shortest path from a state in start to a state in final. If no such path

exists, the algorithm returns infinity. In the algorithm, the function T(S) gives the set of

states that are successors of some state in S. In other words, T(S) = {s' I N(s, s') holds for

some s e S}. In addition, the variables R and R' represent sets of states in the algorithm.

proc min (start, final)

i = 0;

R = start;

R' = T(R) u R;

while ((R' *R)A(R n final) = 0) do

i = i+ 1;

R = R';

R' = T(R')vR';

if (Rn final *0)

then return i;

else return °°;

Figure 16. Minimum Delay Algorithm

The first algorithm is relatively straightforward. Intuitively, the loop in the algorithm com-

putes the set of states that are reachable from start. If at any point, we encounter a state

satisfying final, we return the number of steps taken to reach the state. Figure 17 shows

how the algorithm works by computing the successors of the current frontier (the shaded

area) at each iteration.

In the formal proof of correctness, we use the following notation:

• St is the set of states reachable in i or fewer steps from a state in start.

• L is the length of a shortest path from a state in start to a state in final.

90 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Minimum/Maximum Delay

o: <m

Figure 17. Minimum algorithm: it searches forward from S.

The correctness of the algorithm follows from the following loop invariants:

• i<L

• R = St

• R' = S, j+i

We observe that the three initializing statements insure that the invariants are satisfied

before entering the loop. Next we show that the body of the loop maintains the invariants,

provided the loop test is satisfied.

• The loop invariant on R, R = 5,-, and the second half of the loop test, R n final = 0

imply that i < L, otherwise some state in 5,- would belong to final. This inequality

implies i + 1 < L so we can safely increment i without violating the invariant on i.

A Quantitative Approach to the Formal Verification of Real-Time Systems 91

Verification Algorithms

• The second statement sets R to the value of R', so now R = SM. This means that R now

satisfies its invariant with the new value of i.

• The last statement sets R' to the union of i?' and the image of/?'. So by construction, we
know that R' = Si+2 Therefore, R' satisfies its invariant with the new value for i.

Next we argue about termination. By the definition of S{, we must have 50 c 5j c S2 c ...

Since the number of states is finite, only a finite number of the inclusions can be proper,

and it must be the case that Sk = Sk+X for some k > 0. From the loop invariant we know that

R = St and R' = SM; therefore, the loop cannot execute more than k times without the loop

test R' * R becoming false.

We finish the proof by analyzing what happens at the final conditional. If R n final * 0,
then by the loop invariant, R = Sh there is some s e 5,- such that s e final. From the defini-

tion of St, we know that this state is reachable in i or fewer steps from a state in start. This

gives us an upper bound on L, L < i. The invariant on i, however, is L > i. Therefore, it

must be the case that L = i.

If the test is false, then we must have exited the loop because R' = R. From the invariant, R

= Si and R' = SM; therefore, 5; = Si+l. This in turn means that after reaching all the states

in Si we cannot reach any new states (all the edges of states in St lead to states in 5,-). The

false test tells us that no state in R belongs to final, and we have just argued that R is the set

of all reachable states. Therefore, there is no path from a state in start to a state in final, so

we return infinity.

5.2.2 Maximum Delay Algorithm

This algorithm also takes start and final as input. It returns the length of a longest path
from a state in start to a state in final. If there exists an infinite path beginning in a state in

start that never reaches a state in final, the algorithm returns infinity. The function T (5")

. 92 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Minimum/Maximum Delay

gives the set of states that are predecessors of some state in S' (i.e. T'l(S') = {s I N(s, s')

holds for some s' e 5"}). R and R' will once more be sets of states. Finally, we denote by

notjinal the set of all states that are not in final.

proc max {start, final)

i' = 0;

R = true;

R' = notjinal;

while ((/?' * R) A CR' n start * 0)) do

i = i + 1;

i? = /?';

R' = r\R') n notjinal;

if (/? = /?')

then return °°;

else return i;

Figure 18. Maximum Delay Algorithm

The upper bound algorithm is more subtle than the previous algorithm. In particular, we

must return infinity if there exists a path beginning in start that remains within notjinal.

A backward search from the states in notjinal is more convenient for this purpose than a

forward search. Figure 19 shows the maximum delay algorithm. At each iteration it finds

the set of states which are the beginning of intervals with i states, none satisfying^naZ. Ini-

tially, i is 0, and the frontier is notjinal. At the ith iteration the current frontier is the set of

states that are the beginning of paths with i states completely in notjinal. We then com-

pute the set of predecessors (in notjinal) of the current frontier. Those states are the

beginning of paths with i+\ states completely in notjinal.

We use the following two definitions in proving the algorithm correct:

A Quantitative Approach to the Formal Verification of Real-Time Systems 93

Verification Algorithms

• S(is the set of states which can be the beginning of a path containing i states, all con-

tained in notjinal.

• M is the number of states in a longest path beginning inside start and contained within

notjinal.

0: (S> CD.

1:

3:

Figure 19. Maximum algorithm: it searches backwards from -.F

Although ultimately we are interested in the number of edges in a longest path, it is easier
to reason when we count the number of states in a path. The correctness of the algorithm

then follows from the following loop invariants:

• i<M

. R = S;

• R' = S, i+l

94 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Minimum/Maximum Delay

We observe that the three initializing statements insure that the invariants are satisfied

before entering the loop. We can also show that the statements within the loop maintain

the invariants, provided the loop test is satisfied.

• The invariant on R', R' = Si+h and the second half of the loop test, R' n start * 0 imply

that / + 1 < M. Therefore, we can increment i without violating the invariant on i.

• The second statement sets R to the value of R' so we know that now R = Si+l. This

means that R now satisfies its invariant with the new value for i.

• The third statement sets R' to the inverse image of R' intersected with notjinal. The

invariant gave us that R' = 5,-+1 before the assignment. By construction, after the assign-

ment we have that R' c Si+2. For the inclusion in the other direction, we observe that

any path of i + 2 states contained in notjinal can be thought of as beginning in a state

labeled with notjinal that has an edge to a state that is the beginning of a path of i + 1

states labeled with notjinal. In other words, the states in Si+2 are states in notjinal

with an edge to a state in 5l+1. But these are precisely the states just computed for the

new value of R' so we get that Si+2 c R'. This means that R' also satisfies its invariant

with the new value for i.

Now we argue about termination. First, it should be clear from the definition of St that

50 2 Si 3 S2 2 Since we are dealing with a finite number of states, the initial value, S0

must be a finite set, which in turn means that only a finite number of the inclusions are

proper. Therefore, it must be the case that Sk = Sk+i for some k > 0. By the invariant, R - St

and R' = SM; thus, the loop cannot execute more than k times without the loop test R' * R

becoming false.

Before continuing, we make an observation about the loop test. It can never be the case

that both parts of the loop condition are false. If we assume that both parts of the loop con-

dition are false, then both R = R' and R n start = 0 giving us that R n start = 0. If we

then unroll the loop once, we notice that at the previous iteration, R was assigned the value

A Quantitative Approach to the Formal Verification of Real-Time Systems 95

Verification Algorithms

of R' which would mean that we would have had R' n start = 0 and we would have exited

the loop at that point.

We complete the proof by analyzing what happens at the final conditional. We first con-

sider the case where we exit the loop because R = R'. In this case, we have reached a fix-

point. By the invariant, R = St and R' = SM; therefore we have St = SM. We argued

previously that the states in 5,+1 have edges to states in St. Since SM = Sh we know that

every state in Si+l has an edge to another state in Si+l. So every state in 5,-+1 is the begin-

ning of an infinite path of states remaining in Si+i c notjinal. The previous observation

tells us that R' n start ± 0, therefore some state s e Si+l belongs to start. This state then is

the beginning of an infinite path starting at a state in start, which never reaches a state in

final, so we return infinity.

If R' n start = 0, then by the invariant R' = Si+h we know that there is no path of i + 1

states contained in notjinal beginning in a state in start. No longer path can exist since

this would contradict the absence of a path of i + 1 states, so we have M < i. But we also

have the invariant i < M, so it must be the case that M = i. All edges coming out of the last

state on the path lead to states in final (otherwise there would be a longer path). Since the

transition relation is total, there must exist at least one such edge. Therefore, the longest

path from a state in start to a state in final contains i + 1 states and has length i.

5.3 Quantitative Analysis: Condition Counting

In many situations we are interested not only in the length of a path leading from a set of

starting states to a set of final states, but also in measures that depend on the number of

states on the path that satisfy a given condition. For example, we may wish to determine

the minimum or maximum number of times a condition cond holds on any path from start

to final. The algorithm in this section compute this information.

96 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Condition Counting

To simplify the algorithms, we assume that any path beginning in start must reach a state

in final in a finite number of steps. This requirement is necessary to ensure that the mini-

mum (maximum) is well-defined. It can be checked using the upper bound algorithm

described in the previous section. Finally, we assume that all computations involve only

reachable states. This can be achieved by intersecting start with the set of reachable states

computed a priori.

To keep track at each step of the number of states in cond that have been traversed, we

define a new state-transition system, in which the states are pairs consisting of a state in

the original system and a positive integer. Thus, if the original state-transition graph has

state set S, then the augmented state set will be Sa = S x IN.

If N c S x S is the transition relation for the original state-transition graph, we define the

augmented transition relation Na c Sa x Sa as

Na((s,k), (s',k')) = N(s, s') A (0' € cond A k' = k + 1) v (/ £ cond A k' = k))

In other words, there will be a transition from (s,k) to (/,£') in the augmented transition

relation Na iff there is a transition from s to s' in the original transition relation N and

either s' e cond and k' = k + 1 or s' £ cond and k' = k. We also define Ta to be the function

that for a given set U c,Sa returns the set of successors of all states in U. More formally,

Ta(U)= {u \ Na(u, u) holds for some ue U}.In the actual BDD-based implementation,

an initial bound ä^^ can be selected to achieve a finite representation for k, and new BDD

variables can be added dynamically if this bound is exceeded. The system is still finite-

state because all paths we consider are finite and k is bounded by their maximum length.

5.3.1 Minimum Condition Counting

The algorithm for computing the minimum count is given in figure 20. In the algorithm

text, final and notjinal denote the sets of states in final and S -final, paired with all possi-

ble values of k. More formally:

A Quantitative Approach to the Formal Verification of Real-Time Systems 97

Verification Algorithms

final = {(s,k) I s e final, ke¥i} and notjnal = {(s,k) I s € final, k e IN}

The algorithm uses R to represent the state set in Sa reached at the current iteration, while

reachedJinal and R' are its intersections with final and not_final respectively. Variable

current_min denotes the minimum count for all previous iterations. The minimum compu-

tation over the set of values of k can be done by quantifying out the state variables and fol-

lowing the leftmost nonzero branch in the resulting BDD, provided it uses an appropriate

variable ordering. An efficient algorithm that does not depend on the variable ordering is

given in [58].

proc mincount (start, cond, final)

current_min = °°;

R = {(s,l) I s e start n cond } u {(.s,0) I s e start n ->cond};

while true do

reached_final = R n final;

if reached_final *■ 0 then

m = min{k I (s,k) e reached Jinal};

if m < current_min then current_min = m;

R' = Rr\ not Jinal;

if R' = 0 then return currentjnin;

R = T(R');

Figure 20. Minimum Condition Count Algorithm

At iteration i, the algorithm considers the endpoints of paths with i states. The reached

states that belong to final are terminal states on paths that we need to consider. The mini-

mum count for these paths is computed, using the counter component of the path end-

points, and the current value of the minimum is updated if necessary. For the reached

states that do not belong to final, we continue the loop after computing their successors. If

all reached states are in final, there are no further paths to consider and the algorithm

returns the computed minimum. Figure 21 shows how both the minimum and the maxi-

98 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Condition Counting

mum algorithm work. In the figure, black states satisfy cond. The current frontier (the

shaded area) is expanded forward, while the counter component maintains the number of

occurrences of cond on paths from S. In the figure, darker areas have higher counts, and

the last iteration shows a minimum count and a maximum count paths.

0:

Figure 21. Condition counting: the condition counter is updated during traversal.

We reason about the correctness of the algorithm by showing that the following invariants

are true before the Ith iteration of the loop:

• Ix: A pair (s,k) belongs to R iff s can be reached from start on a path with / states, on

which k states are in cond, and only the last state is allowed to be in final.

• /2: current_min is the minimum number of states in cond over all paths with less than i

states that begin in start and terminate upon reaching final, or infinity if there are no

such paths.

A Quantitative Approach to the Formal Verification of Real-Time Systems 99

Verification Algorithms

Initially, R is the set of states in start, paired with 1 if they belong to cond and with 0 oth-
erwise, and current_min is ~. Therefore, both invariants hold before the first iteration.

By invariant /j, the intersection reachedjinal = R n final contains all states in final

reached for the first time by a path containing i states. The count component k of a reached

state is, by Ih the number of states in cond on such a path. Computing the minimum m of

these values and setting currentjnin = m if m is smaller ensures that currentjnin accounts

for paths with up to i states. Therefore, I2 holds at the beginning of the next iteration.

Since we only consider paths that reach final once, it is correct to continue the state tra-
versal only from states in R' - R n notjinal. If this set is empty, there are no further paths,
with more that i states, that reach final. Therefore, by invariant I2, currentjnin is the cor-

rect return value. For the case where the loop is continued, the definition of transition rela-
tion ensures that the count component in the augmented state space is incremented on a
transition step if and only if the new state is in cond. This implies that the count compo-
nent k represents at all times the number of states in cond traversed on a path. Conse-
quently, 11 will hold again for the new value of R obtained as the image of/?' under T.

Next, we argue that the algorithm terminates. The precondition ensures that all paths from
start reach final in a finite number of steps. Thus, we will eventually have R' = R n

notjinal = 0, and the algorithm correctly returns the value currentjnin.

As an optimization, the number of iterations required in certain cases can be reduced by

introducing the line
R' = R' n {(s,k) \se S A k < currentjnin}

before testing R' = 0. All paths with a count of at least currentjnin can be safely dis-
carded, which reduces the search to those paths on which the count for cond is still smaller

than the currently achieved minimum.

100 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Optimized Condition Counting

5.3.2 Maximum Condition Counting

The algorithm for the maximum count, given below, has the same structure as the mini-

mum count and can be obtained by replacing min with max and reversing the inequalities.

Variants of both algorithms can be used to compute other measures that are a function of

the number of states on a path that satisfy a given condition. For example, we can deter-

mine the minimum and the maximum number of states belonging to a given set cond over

all paths of a certain length I in the state space.

proc maxcount (start, cond, final)

current_max = -<»;

R = {(s,l) I s e start n cond} u {(s,0) I s e start n ->cond};

loop

reached_final = R n final;

if reachedjinal * 0 then

m = max{Ä; I (s,k) e reachedjinal};

if m > currentjnax then current jnax = m;

R' = Rr\ not_final;

if R' = 0 then return currentjnax;

R = T(R');

endloop;

Figure 22. Maximum Condition Count Algorithm

5.4 Quantitative Analysis: Optimized Condition Counting

The condition counting algorithms presented in the previous section augment the state

space with a counter k. This counter maintains information about the number of times the

condition cond has been encountered on paths from start. The algorithm actually com-

putes all possible values of k for all paths beginning in start. Algorithms requiring the

exact number of times cond occurs can be constructed from the basic condition counting

A Quantitative Approach to the Formal Verification of Real-Time Systems 101

Verification Algorithms

algorithms. However, for the computation of the minimum and maximum the exact num-

ber of occurrences is not needed. The algorithms presented in this section can be used to

count minimum and maximum occurrence times without augmenting the state space.

5.4.1 Optimized Minimum Condition Counting

The minimum condition count algorithm computes the minimum number of states satisfy-

ing a given condition cond over all paths that start in a state in start and end in a state in

final. Any paths starting in start, but which do not reach final in a finite number of steps

are excluded from this computation. In particular, if no path from start ever reaches final,

the algorithm will return the special value NOPATH.

The algorithm searches forward beginning in start. It looks for paths with an increasing

number of occurrences of cond. Each iteration consists of two phases: The first is a for-

ward traversal through states that do not satisfy cond. This traversal is performed until all

states (not satisfying cond) reachable from the current frontier are found (steps 1 and 3 in

figure 24). If final has not been reached yet, the frontier is expanded by one step to states

that satisfy cond and the condition counter is incremented (steps 2 and 4 below). The algo-

rithm iterates until final is found, or all reachable states are visited.

The algorithm must differentiate between states that do not satisfy cond and those that do,

and similarly, between transitions leading to these states. We use subscripts 0 and 1

respectively for the two types of states and transitions. For example, startQ is the set of ini-

tial states that do not satisfy cond, and startx is the set of initial states that satisfy cond.

starts = start n -icond startx = start n cond

Furthermore, if N(s, s') is the transition relation, we denote by T0(S) and T^S) the set of

transitions from a state in S that lead to states not satisfying cond and to states satisfying

cond, respectively:
T0(S) ={s'\3se S. N(s,s') AS' £ cond)

TX{S) = {s' | 3 s e S. N(s,s') AS'& cond}

102 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Optimized Condition Counting

proc mincount(staxt, cond, final)

i = 0;

R = 0;

R' = startQ,

do

do

if (R' n final * 0) return i;

R = R';

R' = T0(R')vR';

while (R'±R);

Ä' = r1(/OuÄ';
if (i = 0)R' = R'vstartl;

i = i + 1;

while (R'*R)

return NOPATH;

Figure 23. Minimum Condition Count Algorithm

We will prove the correctness of the algorithm by showing that certain loop invariants are

satisfied and that the algorithm terminates. We will use the following notations:

• endpoints{i) is the set of all states that can be reached as endpoints of finite paths start-

ing in start and having i or less states in which cond holds.

• mincount is the minimum condition count as described above.

Two invariants are defined. The first holds at the start of iteration i + 1 of the outer loop:

/jO'): ((i = 0 A R' = starte) v (i > 0 A R' - endpoints(i) n cond)) A mincount > i

The second holds, in the same iteration, after the inner loop:

72(0: R* = endpoints(i) A R' n final = 0 A mincount > i

A Quantitative Approach to the Formal Verification of Real-Time Systems 103

Verification Algorithms

3:

Figure 24. Optimized minimum count: each iteration has two steps: 1 and 2; 3 and 4.

Lemma 1 The algorithm terminates.

Proof If a state satisfying final is reached, the algorithm clearly terminates, returning the
current value of i. If not, the exit condition of both loops is R' = R. By construction R' 2 R,

and since there is only a finite number of states, there can be no infinite sequence of dis-

tinct values for R'.

Lemma 2 /j and 72 are invariants of the algorithm.

Proof The correctness of the invariants will be proven by induction on i. Invariant ^(0)

clearly holds at the beginning of the first outer loop, since i = 0,R' = start0, and mincount

> 0. We will now prove that 71(0 -> 72(i) and 72(0 -» 71(J'+1).

104 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Optimized Condition Counting

Assume Ix holds at the beginning of iteration i. If i = 0, we have R' = start0 before the

inner loop. If the control flow exits the inner loop, a fixpoint has been reached. R' will con-

tain all states reachable from start on paths where cond does not hold (because of the

restriction on T0). But this is exactly endpoints(0), by definition, so 72(0) holds. If i > 0,

then by I\ we have R' = endpoints(i) n cond before the inner loop. A state s is in end-

points(i) n -^cond iff there is a state t e endpoints(z') n cond from which s is reachable by

a path that does not pass again through cond. The inner loop adds precisely the set of all

such states to R'. Therefore, after the inner loop R' = endpoints(i). Moreover, R' n final =

0, otherwise the algorithm would have terminated in the inner loop. We conclude that

Now assume I2(i) is true at the end of the inner loop, and let us prove that ^(i+l) holds at

the beginning of the next outer loop iteration. A state s e endpoints(i+\) n cond satisfies

one of two cases: It is either on a nondegenerate path from start, and thus reachable by a

transition from a state in endpoints{i), or it is on a degenerate path from start (i = 0 and s

e startx). In the first case, it is added to R' in the first statement after the inner loop, and in

the second case, in the second statement after the inner loop. Therefore, after line 12, R' =

endpoints(i+l) n cond. Furthermore, since the inner loop was exited with R' = end-

points(i) n final by I2(i), there is no path with count < i that reaches final, so mincount > i

or, equivalent^ mincount > i + 1. Taking into account that i is incremented in line 13, both

conjuncts of J^i+1) are satisfied, which shows that 72(0 -» Z1(/-J-l). The induction proof is

completed.

Lemma 3 The algorithm returns the minimum number of occurrences of cond in any path

from start to final.

Proof The correctness of the algorithm can be seen by analyzing its return value. There

are two possible return conditions, the first being when R' n final * 0 and the algorithm

returns i. At this point R' c endpoints(i) by Ix and the restriction on T0. Consider a state s

e R' n final. Then s € endpoints{i-\) since J20'-1) ensured that endpoints{i-\) n final = 0.

A Quantitative Approach to the Formal Verification of Real-Time Systems 105

Verification Algorithms

Therefore s must be reached by a path containing exactly i states satisfying cond and thus

mincount < i. Since by I\ mincount > i, we conclude that mincount = i.

If the algorithm returns NOPATH, then R' doesn't intersecting in any iteration. The algo-

rithm exits the outer loop when R = R\ which means that a fixpoint has been found. Every

state reachable from start can be found by alternating (possibly empty) sequences of tran-

sitions in T0 with transitions in Tx. Therefore that fixpoint is precisely the set of states

reachable from start. We can conclude that all paths originating in start will be completely

contained in -final, since R' n final = 0. Hence, the algorithm returns the correct value

NOPATH.

5.4.2 Optimized Maximum Condition Counting

The maximum condition count algorithm computes the maximum number of states satis-

fying a given condition cond over all paths that begin in a state in start and end in a state in

final without previously traversing a state in final. If there is a path beginning in start that

goes through cond infinitely often without reaching final, the algorithm returns infinity.

The basic idea behind the algorithm is to find paths with increasing condition count whose

states are all within -final. The condition count of the longest path satisfying this condi-

tion and starting in start is the desired maximum.

The algorithm assumes that all states are reachable from start. This can be enforced by

performing a reachability computation from start and restricting the state space to reach-

able states. Moreover, we require that every state has at least one outgoing transition.

Similarly to the mincount algorithm, we will denote transitions into states that satisfy cond

and that do not satisfy cond separately. This algorithm, however, performs a backward

search, and we must define the reverse image of the transition relation. In this case B0(S')

is the set of states satisfying neither cond nor final that lead to a state in S' in one step.

Similarly B^S') is the set of states satisfying cond but -final that lead to a state in 5" in

106 A Quantitative Approach to the Formal Verification of Real-Time Systems

Quantitative Analysis: Optimized Condition Counting

one step. Note that final only appears implicitly in the algorithm, in the definitions of B0

andi^.

B0(S') = {s\3s'e S' .N(S,S')AS€ finalAS£ cond}

BX(S') = {s 13 s' e S'.N(s, S')AS<£ final ASE cond}

We use the following notations:

• startpoints(i) is the set of all states that are the start of a finite path in which has no

states in final (except possibly the last one), and which has i states that belong to cond.

• maxcount is the maximum condition count, for a path starting in start and ending in

cond, in which no states belong to final, except possibly for the last one belong to final.

proc maxcountistart, cond, final)

R' = cond;

do

Ri=R';

do

R = R';

R' = R' u B0(R');

while (R'±R);

if (R' n start = 0) return i -1;

R^B^R');

i = i+ 1;

while (R'*Ri);

return «>;

Figure 25. Maximum Condition Count Algorithm

A Quantitative Approach to the Formal Verification of Real-Time Systems 107

Verification Algorithms

We prove the correctness of the algorithm using two invariants. The first one holds at the

beginning of the outer loop:

Il(i): R' = startpoints(i) n cond A i -1 < maxcount

The second invariant holds at the end of the inner loop:

I2(i): R' = startpointsii) A i - 1 < maxcount

Lemma 4 7j and I2 are invariants of the algorithm.

Proof We prove by induction on i that the invariants hold at the corresponding points in

the algorithm and argue separately about termination. Invariant ^(0) trivially holds at the

beginning of the first iteration, since paths with a condition count of 1 that have both end-

points in cond are exactly the degenerate paths consisting of a state in cond. Furthermore,

clearly maxcount > 0. Next, we prove that 71(0 -» 72(z) and that I2(.i) -» 71(i+l).

Assume that 71(*') holds. The inner loop adds to R' all states that lead to states in Rh with-

out being in final or cond. Since all states in startpointsii) can be found by a backward tra-

versal from startpointsii) A cond and i does not change, this establishes I2(i).

Now assume I2(i) holds after the inner loop, and that R' n start # 0 (otherwise the algo-

rithm terminates and we have no further invariants to prove). Then there is at least one

path from start to cond with i occurrences of cond, and therefore maxcond > i. A state p is

in startpoints{i+\) n cond exactly if it belongs to cond and it has some successor in start-

pointsii). Therefore, since R' = startpointsii) by I2(i), we will have B^R') = start-

pointsii+l) n cond, thus i - 1 < maxcond after / is incremented, and 7i(/+l) holds, which

completes our induction proof.

Lemma 5 The algorithm terminates.

108 A Quantitative Approach to the Forma! Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

Proof The inner loop of the algorithm performs a backward reachability computation. It is

executed only a finite number of times, because the value of R' is monotonically increas-

ing, and the state space is finite, so a fixpoint has to be reached. Next, we argue that the

outer loop finishes as well. This clearly happens if at some point, R' n start = 0 after the

inner loop. Otherwise, let us show that the sequence of values i?' at the end of each outer

loop iteration is monotonically decreasing. By Ih R' = startpoints(i) n cond. But any state

in startpoints{i) is certainly in startpoints{i-\), since we can restrict the path with i occur-

rences of cond to some prefix containing only i - 1 states in cond. Since the state space is

finite, the monotonically decreasing sequence of sets R' will eventually reach a fixpoint,

the loop terminates and the execution of the algorithm as well.

Lemma 6 The algorithm returns the maximum number of occurrences of cond in any path

from start to final.

Proof If R' n start = 0 at the end of the inner loop, this means that there are no paths with

count i leading from start to cond, completely in -final, and consequently, no paths with

count greater than i (since they would have a prefix with count i). Therefore, maxcount < i.

Since by I2, maxcount > i - 1, it follows that maxcount = i - 1 is the correct return value. If

the outer loop is exited due to the fixpoint, startpoints{i) = startpoints(i+j) for all j > 0.

Moreover, startpoints(i) n start * 0, therefore, there exists an infinite path beginning in

start, completely contained in -final and in which cond holds infinitely often.

5.5 Selective Quantitative Analysis and
Interval Model Checking

Typically, quantitative analysis investigates all intervals between a set of initial states start

and a set of final states final. In many cases, however, it is desirable to restrict the consid-

eration to only execution paths that satisfy a certain condition. This can help in under-

standing how the system reacts to different conditions. For example, one common

technique for achieving good performance is to optimize a design for the most common

cases, while maintaining correctness for the uncommon ones. The designer can optimize

A Quantitative Approach to the Formal Verification of Real-Time Systems 109

Verification Algorithms

response time by restricting system behavior to the most frequent cases. Correctness can
then be checked by removing the restrictions. This section presents algorithms that allow
the designer to perform quantitative analysis very accurately by selecting execution

sequences of interest and analyzing them separately.

Formulas of the linear-time temporal logic LTL are used to specify a set of paths selected

to be verified. Quantitative analysis is then applied only to those paths along which the

formula holds. We also extend the technique for cases in which a more precise analysis is

needed, by requiring that the selecting formula be true exactly on the investigated interval

and not just anywhere on the path.

To strengthen our verification methodology, we combine selective quantitative analysis
with model checking. Traditionally, LTL model checking procedures [22,56,74] accept a
structure that models the system, a set of initial states, and an LTL formula. The proce-
dures determine whether the formula holds on all infinite paths of the structure starting on
some initial state. In this work we extend the construction of [22] for interval model

checking, that is, checking a formula with respect to finite intervals.

Both interval model checking and selective quantitative analysis can be used to extract
information related to specific "parts" of a system without changing the model. Similar
information sometimes can be obtained by restricting the model to disable uninteresting
behaviors, or by marking the interesting ones using observer modules. However, these
techniques frequently modify system behavior, and consequently properties are checked
on a model different than the original one, possibly hiding important errors, or introducing
false ones. Also, such methods are usually ad hoc; the class of execution sequences that
can be analyzed cannot be characterized in a straightforward way. They are also more dif-

ficult to implement and error-prone.

Moreover, the fact that properties are verified over finite intervals, allows very different
types of properties to be expressed. It is possible to check for "traditional" properties such
as safety and liveness, but also to investigate system behavior in more detail. In the real-

110 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

world not all possible execution sequences are equally interesting. Nor are all possible

time intervals within a path.

Linear-time temporal logics interpreted over both infinite paths and finite intervals have

been introduced in [57,61]. However, they only check the satisfiability of a formula, and

do not handle either quantitative analysis or interval model checking. Interval logics are

also used in [67], but in a theorem proving context. However, what differentiates our

method from related ones is the fact that these tools do not allow a selective verification of

properties as the proposed method. They provide no natural way in which a subset of

behaviors can be analyzed in isolation, not allowing as rich an analysis as the proposed

method. The closest method to our selection of paths or intervals is the use of fairness con-

straints in model checking [20,32,62]. However, there a fairly restricted types of proper-

ties were used for selection, while we can handle any LTL formula. Moreover, only

infinite paths can be selected in these works.

5.5.1 A tableau for LTL

Our specification language is a linear-time temporal logic called LTL [65]. The logic is

used for two different purposes. One is to specify a property of the system that needs to be

verified. The other is to specify a set of selected paths that will be verified. In both cases

we use a tableau [56,74,22] for the formula.

We first give the syntax of LTL. Given a set of atomic propositions AP, LTL is defined

inductively as follows. Every atomic proposition is an LTL formula. If/and g are LTL for-

mulas then ->/, f v g, X/and/U g are also LTL formulas.

The semantics of LTL is defined with respect to a labeled state transition graph. A graph

M = (S, R, L) has a finite set of states S, a transition relation RcSxS, and a labeling func-

tion L : S -» Powerset(AP), associating with each state the set of atomic propositions true

in that state.

A Quantitative Approach to the Formal Verification of Real-Time Systems 111

Verification Algorithms

An infinite sequence s0, sh ... of states in 5 is a path in the structure M from a state 5 iff

s = s0 and for every j > 0, (sj, sj+l) e R. A finite sequence [s0, ..., sn] is an interval in a

structure M from a state 5 iff s = s0 and for every 0 <; < n, (sp sj+1) e R. An interval may

be a prefix of either a finite interval or an infinite path. Thus, sn may or may not have suc-

cessors in M. The size of interval c = [s0, -, sn], denoted | a |, is n. & is defined iff 0 <;' <

n and it denotes the suffix of c, starting at Sj.

For a formula/, a path %, and an interval a, the meaning of M, n |=path/is that/holds along

path 7t in the graph M. M, c |=int/means that/holds along interval a in M. Given a desig-

nated set of initial states S0, we say that M, S0 (=path/iff for every Path n from every state

in S0, M, n |=path /. Given two designated sets of states start and final, we say that M,

[start, final] |=int/iff for every interval c from some state in start to some state mfina^

M, s Hint/- Note that tnis definition does not require that intervals be disjoint. Unless oth-

erwise stated, overlapping intervals are allowed.

The relation (=path is defined inductively as follows (the structure M is omitted whenever

clear from the context).

1- * NpathPiff P e Uso), for/? e AP.

2- n l=Path-'/iff7,: l^path/-

3- 7C hpath/l v/2 iff K Npath/l or n t=Path/2-

4- 7C t=path X/j iff Tt1 Npath/l-

5. 7U f=path/i U/2 iff there exists a Ä; > 0 such that TC* t=path/2 and for all 0 <;' < k, nJ F=path/i-

The relation |=int is identical to |=path for atomic propositions and boolean connectives. For

temporal operators it is defined by:

6. a Km X/i iff I a I > 0 and a1 hnt/i-

U2 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

7. G Knt/i U/2 iff there exists a 0 < k < n such that c* (=int/2 and for all 0 <;' < k, o> Knt/l-

The following abbreviations are used in writing LTL formulas:

• fAg = n(-,/V-ig)

• ¥f=true\Jf

In the following, whenever we refer to a path that satisfies a formula, the satisfaction is

with respect to |=path. Whenever an interval is considered the satisfaction is with respect to

(=int. Finally, whenever states are considered, satisfaction is with respect to |= for CTL, as

defined in section 2.1.1.

Note that, in the definition of [sQ,... sn] |=/we do not consider successors of sn (whether

they exist or not). This definition is meant to capture the notion of an interval satisfying a

formula independently of its suffix; satisfaction is always defined independently of the

prefix.

It is also important to notice that LTL formulas may have quite a different meaning when

interpreted over paths or over intervals. For instance, a path will satisfy the formula G F a

iff a holds infinitely often along the path. On the other hand, an interval will satisfy this

formula iff the last state of the interval satisfies a. Furthermore, while the formulas -i X a

and X -. a are equivalent over paths; these formulas are not equivalent over intervals. To

see this, consider an interval [s0] of size 0. [s0] |=int -. X a but [sO] |/=int X -i a.

Let /be an LTL formula. We construct a Kripke structure T(f), called the tableau for/,

containing all paths and intervals satisfying/ The tableau described below is based on the

construction given in [22]. There, the tableau is used to check the truth of a LTL formula

for all paths of a given Kripke structure. Here it will be used for three purposes:

A Quantitative Approach to the Formal Verification of Real-Time Systems 113

Verification Algorithms

• Selecting the set of paths of a structure that satisfy/and computing minimum and max-

imum delays over those paths;

• Selecting the set of intervals of a structure that satisfy/and computing minimum and

maximum delays over those intervals;

• Checking that a specified set of intervals of a structure satisfy/

We first introduce the notion of fairness constraint, needed for some of the tableau appli-

cations. A fairness constraint for a structure M can be an arbitrary set of states in M, usu-

ally described by a formula of the logic. A path in M is said to be fair with respect to a set

of fairness constraints if each constraint holds infinitely often along the path.

We now give an informal description of the tableau. A state of the tableau is a set of for-
mulas, intended to be true along all paths in the tableau that start with that state. The tran-
sition relation of the tableau guarantees the satisfaction of all formulas except formulas of
the form/U g. If/U g is included in a state, then the tableau construction guarantees that
/ is true as long as g is not true. In the case of LTL over paths, fairness constraints are
required in order to identify those infinite paths along which g will eventually be true. For
LTL over finite intervals, it is sufficient to consider those intervals that have a final state
that does not contain any formula of the form X g. Intuitively, X g formulas can be viewed
as transferring to next states the requirements that are necessary for the satisfaction of/
and are not yet fulfilled. Thus a state that contains no formula of the form X g indicates

that all necessary requirements have already been fulfilled.

The tableau T(f) is constructed as follows. Let APf be the set of atomic propositions in/

The tableau associated with /is a structure T(f) = (ST, RT, Lj) with APf as its set of atomic

propositions. Each state in the tableau is a set of elementary formulas obtained from/ The
set of elementary subformulas of/is denoted by el(f) and is defined recursively by:

• elip) ={p} if p e APf.

. el(^f) = el(f).

114 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

. el(fvg) = el(f)vel(g).

. el(Xf)={Xf}\jel(f).

. el(fV g) = {X(fU g)} u e/tf) u el{g).

Thus, the set of states ST of the tableau is Powerset(el(f)). The labeling function Lr is

defined so that each state is labeled by the set of atomic propositions contained in the state.

In order to construct the transition relation RT, we need an additional function sat that

associates with each elementary subformula g of/a set of states in ST. Intuitively, sat(g)

will be the set of states that satisfy g.

• sat(g) = {s | g e s } where g e el(f).

• sat(-ig)= {s\s£ sat(g)}.

• sat(g v h) = sat(g) u sat(h).

• sat(g Vh) = satQi) u (sat(g) n sat(X(g U A)))-

We want the transition relation to have the property that for every elementary formula X g

off, X g is in a state iff X g is true in that state. Clearly, if X g is in some state s, then all

the successors of s should satisfy g. Moreover, if X g is not in s, then no successor of s

should satisfy g. Thus, the definition for RT is

Rj(s, s') = Ax?e el(f) (s e sat(X g)<=*s'e sat(g))

Unfortunately, the definition of RT does not guarantee that eventuality properties are ful-

filled. Consequently, an additional condition is necessary in order to identify those paths

and intervals along which/holds. In order to identify the paths along which/holds we

define a set of fairness constraints, Fair c Powerset{Sj),

Fairif) = {sat(-> (g U h) v A) | g U A occurs in/}

A Quantitative Approach to the Formal Verification of Real-Time Systems 115

Verification Algorithms

The constructed tableau T(f) includes every path and every interval which satisfies/. The

following theorem characterizes those paths and intervals. Notice that a state is in Power-

set(APß iff it does not contain any formulas of type X g.

Theorem 7 Let T(f) be the tableau for/.

1. For every path % in T(f), if K starts from a state s e sat(f) and 7t is fair for Fairif) then

T(f), P Hpath /•

2. For every interval a = [t0, ..., tn] in T(f), if t0 e sat(f) and f„ e Powerset(APf) then

7I/),°hnt/-

In the algorithms presented later we will use the product P = (Sp, Rp, LP) of T(f) = (ST, RT,

Lj) with the verified structure M = (SM, RM, LM). We restrict AP^to be a subset of AP:

• S.p={(s,t)\se SM,tz ST and L^s) n APf= Lft) }

. RP((s, f),(s', t')) iff RM(S, S') and /?T<?, 0-

• LP((s, t)) = Ljis).

5.5.2 Selective Quantitative Analysis Over Paths

Given two sets of states start and final in M and an LTL formula/ we compute the lengths

of a shortest interval and a longest interval from a state in start to a state in/na/ along

paths from start that satisfy/ The formula/is interpreted over infinite paths and is used to

select the paths over which the computation is performed. The minimum and maximum

algorithms with path selection are:

1. Construct the tableau for/ T(f).

2. Construct the product P of T(f) and M.

3. Use model checking algorithms on P to identify the set of states fair in P, where a state

(s, t) e SP (s e M, t e T(f)) is in fair iff t is the beginning of a path which is fair with

respect to Fair(f).

U6 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

4. Construct P', the restriction of P to the state set/air. P' = (S'p Rp L'P) is defined by:

S'p =fair, R'p = RPn (SP x S'p) and for every s e fair, L'P(s) = LP(s).

5. Apply minimum(st, fit) and maximum(st, fit, notjn) to P', with st = (start x satif)) n

fair,fii = (final x ST) nfair, and notjn =fair -fix.

The algorithms work correctly because P contains all paths of M that are also paths of T(f)

(the proof is presented in section 5.5.5). P' is restricted to the fair paths of T(f). Thus,
every path in P' from (start x sat(f)) n S'P satisfies/. Consequently, applying the algo-

rithms to P' from (start x sat(f)) n SP to (/ma/ x ST) n 5/> over states in/a/r produces the

desired results.

As mentioned before, in order to work correctly, the algorithm maximum must work on a
structure with a total transition relation. The transition relation of P is not necessarily total.
However, the transition relation of P' is total since every state in fair is the beginning of

some infinite (fair) path.

5.5.3 Selective Quantitative Analysis Over Intervals

Given two sets of states start and final and an LTL formula/, we compute the lengths of a
shortest and a longest intervals from a state in start to a state in final such that/holds along
the interval. Here the formula/is interpreted over intervals and we consider only the inter-

vals between start and final that satisfy/.

Modified Quantitative Algorithm
Before proceeding, a minor modification needed in the maximum delay algorithm is pre-
sented below. This change does not affect the correctness of the algorithm, but is neces-
sary in order to allow selective quantitative analysis to be performed over intervals.

A Quantitative Approach to the Formal Verification of Real-Time Systems 117

Verification Algorithms

proc max {start, final, notjinal)

if (start n (final u notjinal) = 0) then return °°;

/ = 0;

R = true;

R' = notjinal;

while (R'*RAR' n start * 0) do

i = i+ 1;

R = R';

R' = Tl(R')r\ notjinal;

if(R = R')

then return °°;

else return i;

Figure 26. Modified Maximum Delay Algorithm

The only changes are that notjinal is now a parameter of the algorithm, and an initial con-

ditional has been introduced. Notice that if notjnal = -i final the modified algorithm

behaves exactly as the original one. The only case in which notjinal is not the same as

—i final is when computing properties over intervals. As will be seen later, in this case

notjinal correspond to states not in final, but which eventually lead to final. The initial

conditional states that if no starting state is in final, or leads to final, the algorithm returns

infinity, as expected.

We will use a special formula prop to identify the set of tableau states that contain only

atomic propositions.

prop ={i€ ST | s e Powerset(APß }

The formula prop is a set of states in T(f). We extend prop to propp, which is the corre-

sponding set of states in P. The formula finalp is the similar extension of final:

118 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

propp = {(s, i)e SP\se SM, te prop)

finalp - {(s, t) e SP \ s e final, t e ST}

We will also use a CTL formula % to identify the set of states over which the maximum

algorithm is computed.

% = -, finalp A E[-i finalp V (propp Afinalp)]

States in % lead to states that are endpoints of intervals satisfying / (states in propp, see

theorem 7), and that are also in finalp. The requirement that finalp does not hold until

propp is needed because an interval ending in finalp without going through propp does not

satisfy/.

The minimum and maximum algorithms with interval selection are:

1. Construct the tableau for/, T(f).

2. Construct the product P of T(f) and M.

3. Use model checking algorithms on P to identify the set of states that satisfy the CTL

formula %.

4. Let st = (start x sat(f)) n SP and let fn = (final x prop) n SP The algorithms mini-

mum(st, fit) and maximum(st, fit, %) when applied to P will return the length of the

shortest and longest intervals, respectively, between start and final that satisfy/.

The correctness of the algorithm relies on the fact that P contains all intervals that are both

in T(f) and M. Moreover, intervals of 7X0 from sat(j) to prop satisfy/. Thus, the algorithms

compute shortest and longest lengths over intervals from start to final that satisfy /. The

proof is presented in section 5.5.5.

When the maximum algorithm is computed over the set not_final of states not in final, it is

necessary to require that the transition relation of the structure is total in order to guarantee

A Quantitative Approach to the Formal Verification of Real-Time Systems 119

Verification Algorithms

that the computed intervals terminate at a state in final. Here the maximum algorithm is
computed over the set of states satisfying the formula %• This guarantees that the intervals

considered terminate at final without the need to require that the transition relation is total.

Selecting Intervals using Formula Translation

There is another method that can be used to perform selective quantitative analysis over

intervals. Given a formula/it is possible to translate it into formula/ such that/holds on

an interval % = [s0, sh ..., sn] iff/ holds on paths which have n as prefix. For example, if

/= F cond, then/ = start -»(-. final U cond). It is possible then to perform selective quan-

titative analysis over paths on formula/.

However, performing the analysis over paths is significantly more expensive than per-
forming it over intervals. The reason is that checking tableau properties over infinite paths
require verification on fair paths, and computing the fairness constraints for all temporal
operators in the formula is very expensive. Tableau properties over intervals, on the other

hand, require no fairness, since intervals are finite.

Intuitively we can see that it is easier to determine interval satisfaction because it does not
depend on the interval suffix, and as soon as the end of the interval is identified, verifica-
tion stops. Path satisfaction, on the other hand must be guaranteed for infinite paths, and
the early stop condition does not apply. In our practical experiments using formula transla-
tion instead of verification over intervals resulted in a slow down of about 5 to 6 times.

5.5.4 Interval Model Checking

For a given a structure M and two set of states start and final, an interval a = [s0,..., sn]

from a state in start to a state in final is pure iff for all 0 < i < n, st is neither in start nor in

final.

Given a structure M, two sets of states start and final, and a formula/, the interval model
checking is the problem of checking whether the formula/, interpreted over intervals, is

120 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

true of all pure intervals between start and final in M. An interval a = [s0,..., sn] from a

state in start to a state in final is pure iff for all 0 < i < n, st is neither in start nor in final.

Interval model checking is useful in verifying periodic behavior of a system. A typical

example is a behavior that occurs in a transaction on a bus. If we want to verify that a cer-

tain sequence of events, described by an LTL formula/, occurs during a transaction we can

define start to be the event that starts the transaction and final to be the event that termi-

nates the transaction. Interval model checking will verify that/holds on all intervals

between start and final.

Let M, start, final, and /be as above. The algorithm given below determines the interval

model checking problem using the minimum delay algorithm.

1. Construct the tableau for —if, T(—>f).

2. Compute the product P of T(-if) and M.

3. Apply the algorithm minimum(st, fit) to P with st = (start x sat(—>f)) n Sp and fn =

(final x prop) n Sp

4. If the minimum is infinity then there is no pure interval from start to final that satisfies

—if. Thus, every such interval satisfies/

5.5.5 Correctness of the Algorithms

Correctness of the Tableau Construction

In this section we prove the properties of the tableau, as stated in theorem 7. There are two

cases to consider, for infinite paths and for finite intervals. The properties of the tableau

with respect to infinite paths can be found in [22] and will not be repeated here. In this sec-

tion we prove only the properties related to finite intervals.

A Quantitative Approach to the Formal Verification of Real-Time Systems 121

Verification Algorithms

Given a structure M and a tableau T(f) for/e LTL, the product P of M and T(/) is a struc-
ture in which the intervals from satif) to prop correspond to the intervals of M that satisfy

/. In fact, intervals in the product have a closer relation with intervals in M and Tf:

Lemma 8 x" = (s0,t0),(shh),... is a path or an interval in P with Lp^s^)) = Ljitj) for i > 0

iff there exist % = s0, sh ... in M, and x' = t0, th ... in T(f) with L^) = LM(sf) n AP/for i > 0

Proof Immediate from the definition of the product.

The product can be used in two ways. If we wish to restrict our attention only to intervals
in M from start to final that satisfy/, we can consider instead intervals from (start x satif))

to (final x prop) in the product structure. On the other hand, in order to prove that all inter-

vals from start to final in M satisfy/, we construct the product of M with the tableau T(->f)

of -i/, and show that it contains no interval from (start x sat(-nf)) to (final x prop).

Below, we state more precisely the properties of the tableau ensuring that the product has

the required correspondence, and prove their correctness.

In order to identify the intervals of the tableau that satisfy /, we would like to have a

lemma of the form:

% - tn] hnt / iff fie sat® Atne Pr°P

Unfortunately, only one direction of this statement holds, i.e., tt e sat(f) A tn e prop

implies that [tt, ...tn] \=m f, but there are other intervals that also satisfy/

It turns out, however, that the intervals from sat(j) to prop are sufficient in the sense that
for every structure M and every interval in M that satisfies/ there is a corresponding inter-

val in T(f) that starts at sat(f) and ends in prop. Hence, for our purposes it is sufficient to

focus solely on these intervals.

122 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

Our proof is structured as follows. Theorem 11 proves that if an interval in the tableau

starts in a state that satisfies satif) and ends in a state in prop then it satisfies/. Theorem 16

proves that every interval in M that satisfies/corresponds to an interval in T(f) that starts

in satif) and ends in prop. The proof uses the following steps. For an interval [st,..., sn] in

M we define a sequence [s*, ... s*n] and show that each s*j is a state in the tableau

(Lemma 12). We notice that by the definition of s*, the last element in the sequence, sn,

contains only atomic propositions (Lemma 13). Next, we show that [st, ..., sn] [=int/iff

s* e satif) and s*n e prop (Lemma 14). Finally, we prove that there is a transition between

s* and s*j+l (Lemma 15), thus [s*, ..., s*n] is an interval in T(f). Altogether this implies

Theorem 16.

We start with Lemma 9 and Lemma 10 that prove two technical results, needed in later

proofs. These results help to relate the definition of satisfaction (= with the definition of the

set sat for formulas of the form/ U g.

Lemma 9 [sh ...,sn] |=/U g iff either [sh ...,sn] N g or [sh ...,sn] |=/and [sf, ...,sn] |= X(f U g).

Proof We first show that if either [s,-,..., sn~\ \=gor [sh ..., sn] (=/and [sh ..., sn] \= X(f\J g),

then [st, ...,sn] \=f\J g, i.e., there exists i<k<n such that [sh ...,sn] \= g and for all i <j < k,

[Sj, ..., sn] \=f.

If [sh ..., sn] |= g the result immediately holds for k = i. Otherwise, assume [st,..., sn] \=f

and [sit ..., sn] |= X(fU g). The latter implies that i < n and that [si+l, ..., sn] \=fU g, i.e.,

there exists i+1 <k<n such that [sk,..., sn] \= g and for all i+l <j<k, [sp ..., sn] \=f In

addition, we have [sh ..., sn] |=/, thus we get the required result.

For the other direction, let [sit ..., sn] |=/U g. If [sh ..., sn] (= g for k = i then the result

immediately holds. Otherwise, assume that there is i+l <k<n such that [sk,..., sn] \= g and

for all i < j < k, [SJ, ..., sn] |=/

A Quantitative Approach to the Formal Verification of Real-Time Systems 123

Verification Algorithms

This implies in particular that, [sh ..., sn] \=f. It also implies that [si+1,..., sn] (=/U g. Thus,

[sh ..., sn] \= X(f U g), as required.

Lemma 10 Let [tt,..., tn] be an interval in T(f) such that tn e prop. Let g! U g2 be a subfor-

mula of/. Then, t; e «tfCgi Ü g2) iff there is a i < k < n such that tk e sat(g2) and for every

i <j < k, tj e sat(g{).

Proof For the first direction assume that tt e sat(gx U g2). We prove the required result by

induction on the number of states in the interval [tt,..., tn].

Basis: Let n=i, i.e., tn e sat(g1 U g2). If tR £ sat(g2) then by the definition of sat{gl U g2),

tn e sat(X(g1 U g2))- However, tn e prop, thus r„ e 5af(g2) and the claim holds for k = i.

Induction step: Assume the claim holds for intervals of length r. Further assume that t{ e

sat(gl U g2) for an interval [th ..., tn] of length r+1. If tt e ^flf(g2)then we are done- Other-

wise, if tf £ sat{g2) then by the definition of sat(g} U g2), tt e sat(g{) and t{ e sat(X(g1 U

g2))- By the definition of RT we have that ti+l e 5a?(g! U g2). We can apply the induction

hypothesis on the interval [ti+h ..., tn] and conclude that there is a i+\ < k < n such that tk e

sat(g2) and for every i+1 <j<k, tj e sat(g{). Together with tt e sat(gx) this implies the

required result.

For the other direction assume that there is a / < k < n such that tk e sat(g2) and for every

i <j < k, tj e sat(gi). We prove that tt € satig^ U g2) by induction on the number of states

in the interval [tt, ...,tn].

Basis: Let n = i. Then, k = i and tt e sat(g2). By definition, tt e sat(gl U g2).

Induction step: Assume the claim holds for intervals of length r or less. Let [tb ..., tk] be

an interval of length r+1. We consider two cases. If k = i then t{ e sat(g2), and conse-

quently tt e sat(g1 U g2). Otherwise, if k > i then tk e sat(g2) and for every i+l <;' < k, tj €

124 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

sat{g{). Thus, the induction hypothesis applied to the interval [ti+h ..., tn] implies that ti+l

e sat{gx U g2). Since (f?-, ti+l) e RT, tt e sat(X{gx U g2)). But also tt e sat(g{), which

implies that tt e sat(gx U g2), as required.

The following theorem gives a characterization of the intervals in T(f) that satisfy a given

subformula g off.

Theorem 11 Let [tb ..., tn] be an interval in T(f) and let tn e pro/?, then for every subfor-

mula g off,
tt e sat{g) iff [tt, ..., tn] \= g.

Proof We prove the following by induction on the structure of g:

for every interval [tt, ...,tn] such that tn e prop,

t{ e sat(g) iff ft,..., tn] h g.

1. g is an atomic proposition.

Then tt e sat(g) iff g e L^tf). By definition of satisfaction, this holds iff [tt,..., tn] \= g.

2. g = -.gi-

ff e tttf(g) iff ?j £ ^?(gi)- By the induction hypothesis, this holds iff [tt, ..., tn] |£ gi iff

[ti,...,tn]\=g.

3-g = Xgl.

If tt e sat(X g^ then X gj e rf. Thus n > ?' (otherwise fn £ pro/?) and ff has a successor

f,-+1 in the interval. Since (th tM) e i?r, f,-+1 e sa?(gi) and by the inductive hypothesis,

[ti+h -, tn] |= gv Thus, [tit..., r„] |= g.

For the other direction, let [th ..., tn] \= X gh then i < n and [r/+1, ..., y f= gj. By the

inductive hypothesis, tM e sat(gy). Since (?f, fl+1) e %, f,- e saf(X g^.

4. g = gj v g2 - immediate.

A Quantitative Approach to the Formal Verification of Real-Time Systems 125

Verification Algorithms

5-g = giUg2.

Let ti e sat(gl U g2). Since tn e prop, then by Lemma 10, there is a i < k < n such that tk

e .Ktf(g2) and for every * -•/' < fc' */ e 5fl^l)- Bvthe induction hypothesis we have that

[th •••> fJ N #2 and for a11 » ^ < *. ty> •••' y t= £i- Thus, [th ..., fn] |= g! U g2.

For the other direction, assume [tt,..., rn] 1= gx U g2. Then there exists / < fc < n such that

[th •••> fJ !=■ #2 and for a11 * ^ J < *> fy -' 'J N *i- By the induction hypothesis, ft e

,wtf(g2) a™1 for a11 ' -■/'< k> fj e 5fl!^l)-

Since we also have that tn e prop, Lemma 10 implies that tt e sa^ U g2).

We now give the definitions and lemmas needed to show that for every structure M and for

every interval in M that satisfies/, the tableau T(f) contains a corresponding interval from

sat(f) to prop that agrees with the given one on all subformulas of/. To do so, we fix an

interval [s0,..., sn] in a structure M and define, for every 0 < i < n,

5* = { g | g e el(f) and [sh ..., sn] |= g }

Lemma 12 For every 0 < i < n, s) is a state in T(f).

Proof This is clearly the case, since a state of the tableau is in the powerset of el(f).

Lemma 13 sn e prop.

Proof Note that X g e s* iff (by the definition of s*n) [s*] 1= X g. Since an interval of size

zero does not satisfy a formula of type Xg,Xg£ s*n for every X g € el(f).

Lemma 14 For every g e el(f) u swo(/), where ^wo(/) is the set of all subformulas of/, and

for every 0 < i € n,

[s^ ..., J„] t=g iff s* e sat(g) and s* e prop.

126 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

Proof We prove the lemma by induction on the structure of g, where all elementary for-

mulas are considered to be the basis for induction.

Basis: g e el(f).

For the first direction, assume [sh ..., sn] |= g. Then, by the definition of s*, g e s] and by

the definition of sat{g), s* e sat(g). Since s*n e prop always holds (by lemma 13), the

proof of this direction is completed.

For the other direction assume s* e sat(g) and s* e prop. Then by the definition of sat(g),

ge s] and by the definition of s] we have, [st,..., sn] |= g.

Induction step:

1- 8 = ^g\-

Assume [sit ..., sn] \= -i gv Then, [$,-, ..., sn] ft gv By the induction hypothesis this

implies that either s] £ sat(g{) or s*n i. prop. But by Lemma 13, sne prop always

holds. Thus, si € sat{g{) is true, and therefore .s,- e sat{-> g{).

For the other direction, assume s] e sat(-i g{) and sne prop. Then, st £ sat(g{) and

therefore, by the induction hypothesis, [s{, ..., sn] ft gj. Hence, we conclude [>,-, ...,

Sn\\=^8l-

2. g = gi v g2 — straightforward.

3. g = giUg2-

Assume [sh ..., sn] |= £i U g2. Then, by Lemma 9, either [st,..., sn] |= g2 or [sit..., *„] |=

g1? [st, ..., 5„] |= X(g] U g2) and / < n. By the induction hypothesis (the induction

hypothesis also applies to X(gi U g2), since it is an elementary formula, and therefore

simpler in structure than (gj U g2)), one of the following holds:

• s i e sat(g2) and s M e prop, or

A Quantitative Approach to the Formal Verification of Real-Time Systems 127

Verification Algorithms

• s* £ sat(g{) n sat(X(gl U g2)X s*n
e Prap.

• By the definition of sat(gl U g2), both items imply that s* £ sa^ U g2), and in addi"

tionthat5,„£ prop.

For the other direction, assume s* e sat{gx U g2) and s* £ /?ro/?. By the definition of

sat(gi U g2) one of the following holds:

• s*t £ sat(g2) and 5* £ prop, or

• s* £ «rtfo) and s* £ 5<tf(Xfe1 U g2)) and 5* £ prop.

By the induction hypothesis, the first item implies: [st, ..., sn] |=g2. The second item

implies: [sb ..., sn] £gx and [st,..., JJ J=X(g! U g2). By lemma 9 we conclude that [sh

•••> SJ F=£i u #2-

Corollary [J0, ..., sn] \=fiS s*0 e satif) and s*n £ prop.

It is also important to prove that the sequence of states [s h ..., sn] is indeed an interval in

the tableau.

Lemma 15 For every 0<i<n-l,(S{,s ?+1) £ RT.

ProofLetXg£ el(f).

• s* £ sat(X g) iff X g £ $*, by the definition of sat.

• iff [st,..., 5n] f=X g by the definition of s*.

• iff [si+h ..., J„] N g by satisfiability.

• iff s*i+i £ ^af(g), by lemma 14, since s*n e prop.

128 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

An interval [s0,..., sn] in M and [t0,..., tn] in T(f) correspond iff for every 0 < i < n, L(s-) n

APf^Ljiti).

Theorem 16 Let M be a structure and let |>0,..., sn] be an interval in M such that |>0,..., sn]

|=/. Then, there is a corresponding interval [t0,..., tn] such that t0 e satif), tn e prop and

[t0,... tn] |=/.

•je

Proof Given an interval [s0,..., sn] in a structure M, we choose tt = st. By Lemma 12 and

Lemma 15 we know that [>o,..., s*n] is an interval in T(f). Since [s0,..., sn] [=/, Lemma 14

implies that t0 e satif) and tn e prop. Clearly, for every i, L(5,) n APf = Ljiti). Thus, since

[s0,..., sn] (=/, [t0,..., tn] |=/as well.

This concludes the proof of correctness of the tableau construction.

Correctness of the Algorithms with Path Selection

We now show that the minimum and maximum algorithms respectively compute the mini-

mum and maximum lengths of all intervals in M from start to final on paths that satisfy/.

Lemma 17 For every path 7t = s0, sh ... in M such that % |=/there is a path (s0, t0), (sh tx),

... in P' such that t0 e sat(f).

Proof This lemma is a consequence of theorem 1 in [22].

Lemma 18 For every path %" = (s0, t0), (sh t{),... in %' with t0 e satif), the path % = s0, sh

... in M satisfies/.

Proof Let %" = (,s0, t0), ish t{),... be a path in n'. Then, every state on 7t" is in fair. Thus,

n' = t0, th ... is a fair path in Tif). Since it also starts in satif), rt N/

A Quantitative Approach to the Formal Verification of Real-Time Systems 129

Verification Algorithms

The path % = s0, sh ... in M agrees with %' on the atomic propositions in/. Therefore, n \=f

as well.

Lemma 19 [Correctness of the minimum algorithm] Let st = (start x sat(f)) n fair, fa =

(final x 5r) n/a/r and k be the value returned by minimum(st,fa) applied to P'.

• If k < <=° then k is the size of a shortest interval from start to /naZ in M, along a path

from start that satisfies/.

• If jfc = oo then there is no interval from start to final in M along such a path.

Proof

• Assume that minimum(st,fa) returns k when applied to P'. Then there is a shortest inter-

val [Oo, to),..., (sh tk)] in P' from st \ofh.

Since (s*, tk) e fa, it is in fair as well and therefore it is the start of a path (sk, tk), (sk+l,

4+i),... such that tk, tk+l,... is a fair path in T(f). Adding a prefix to a fair path results in

a fair path. Thus, %' = t0,..., tk, tk+l,... is also fair. Moreover, it starts in sat(f). Thus, by

Theorem 7, n' satisfies/

The path n = s0, ..., sh jfc+1, ... in M agrees with n' on the atomic propositions of/

Therefore, if 7t' satisfies/so does %. Thus, [^0,..., sk] is an interval of size k from ^tor? to

final inMona path that satisfies/

• Now assume there is a shorter interval [w0, ..., «;] with I < k, from start to final in M

along a path {/ = u0, uh ... that satisfies/ By lemma 17, there is a path U" = (w0, v0),

(uY, v{),... in %' from ^ar(/). The interval [(u0, v0),..., (wz, vz)] starts at st, ends in/z and

is shorter than k. This contradicts the correctness of the minimum algorithm. We there-

fore conclude that fc is a shortest interval in M.

• Finally, we must show that if the algorithm returns infinity there are no intervals from

start to final on paths that satisfy/ Assume there is one interval [s0,..., sn] from start to

final along a path s0, sh ... that satisfies/ By lemma 17, there is a path (s0, t0), (sh fj),

130 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

... in TC' from sat(f). Consequently, there is an interval [(s0, f0)> •••» (sn> *n)] in ^ from

(start x satif)) to (final x ST). However, this contradicts the correctness of the minimum

algorithm. We therefore conclude that no interval could exist in this case.

Lemma 20 [Correctness of the maximum algorithm] Let st = (start x sat(f)) nfair,fii =

(final x Sj) nfair and notjair =fair -fn. Let k be the value returned by maximum(st,fin,

not_final) applied to P'.

• If k < °° then k is the size of a longest interval from start to final in M, along a path from

start that satisfies/.

• If k = oo then there is no bound on the size of the interval from start to final in M along

such paths.

Proof The proof follows the same reasoning as in the minimum algorithm and will not be

repeated here for brevity.

Correctness of the Algorithms with Interval Selection
Below we show that the minimum and maximum algorithms compute the minimum and

maximum lengths respectively of all intervals in M from start to final that satisfy/.

Lemma 21 An interval [s0, ..., sn] in the model M satisfies / iff there is a corresponding

interval \j?0,..., pn] in the product P that starts in ({^0} x sat(fj) and ends in ({sn} xprop).

Proof For the first direction, note that the existence of an interval corresponding to [s0,...,

sn] in the tableau is a direct consequence of theorem 16. Lemma 8 guarantees the exist-

ence of the corresponding interval in the product which starts in ({s0} x sat(f)) and ends in

({sn}x prop).

For the second direction, lemma 8 demonstrates the existence of intervals corresponding

to [p0,..., pn] in the tableau and in the original model M. Theorem 11 shows that since the

interval in the tableau starts in sat(f) and ends in prop, then it satisfies / Therefore,

A Quantitative Approach to the Formal Verification of Real-Time Systems 131

Verification Algorithms

because their labels agree on the propositional variables in/, the corresponding interval in

the original model also satisfies/.

Lemma 22 For every interval [(t0,s0), ..., (tn, sn)] in P with t0 e sat(f) and tn eprop, the

corresponding interval [s0,..., sn] in M satisfies/.

Proof Given an interval [(t0, s0),..., (tn, sn)] in P, lemma 8 guarantees the existence of the

corresponding intervals [s0,..., sn] in M and [t0,..., tn] in the tableau. Because the interval

in the tableau starts in sat(f) and ends in prop, theorem 11 shows that it satisfies/ But

since the intervals in the tableau and in M agree on the propositional variables in/, if [t0,

..., tn] satisfies/, so does [SQ, ..., sn].

These lemmas imply that by computing the minimum and maximum lengths of intervals

in P from (start x satif)) to (final x prop) the quantitative algorithms consider all the inter-

vals in M from start to final that satisfy/, and only those. This is made precise by the fol-

lowing lemmas.

Lemma 23 [Correctness of the minimum algorithm] Let st = (start x satif)), fn = (final x

prop) and k be the value returned by minimum(st,fn) applied to P.

• k < oo is the size of a shortest interval from start to final in M, that satisfies/

• If k = oo then there is no interval from start to final in M that satisfies/

Proof Assume minimum(st, fn) is applied to P. By the correctness proof of the minimum

algorithm (see section 5.2.1), the minimum algorithm returns the length of a shortest inter-

val from (start x sat(f)) to (final x prop) in P, if such an interval exists and returns infinity

otherwise.

132 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

• Assume minimumist, fn) returns k. By Lemma 22, there is an interval of size k in M

from start to final that satisfies /. Suppose there is a shorter such interval a. By

Lemma 21 there is a corresponding interval in P, from (start x sat(f)) to (final x prop)

of the same size as c. This contradicts the correctness of the minimum algorithm.

Hence, k is the size of a required interval in M.

• Assume minimum(st, fn) returns °°. Further assume that there is an interval of size k

from start to final in M, that satisfies/. By Lemma 21, there is an interval of the same

size in P from (start x sat(f)) to (final x prop), contradicting the correctness of the min-

imum algorithm. We therefore conclude that no such interval exists in M.

The correctness proof of the selective maximum algorithm is based on the properties of

the maximum algorithm (see section 5.2.2). The following lemma states the required

property for the non-selective algorithm.

Lemma 24 If the maximum(st,fn, notjinal) = k then the size of a longest interval from st,

that lies entirely within notjinal isk-l. If it returns ~ then there is no bound on the size of

such intervals.

Proof The proof of the theorem follows very closely the proof of the maximum algorithm

in section 5.2.2, and it is only outlined here. The following two definitions are used in the

proof:

• Si is the set of states at the start of an interval with i states, all contained in notjinal.

• M is size of a longest interval beginning in start and contained within notjinal.

The correctness of the algorithm follows from the loop invariants:

• i<M

' R = St

• R' = sM

A Quantitative Approach to the Formal Verification of Real-Time Systems 133

Verification Algorithms

Termination is guaranteed because there can be no infinite sequence of distinct 5, given

that the state space is finite and that S; 3 Si+}.

The correctness of the return value follows from the last conditional in the algorithm. If

the loop is exited because R = R', then St = SM. Since SM c T~\Sj), every state in Si+l

has an edge to another state in Si+V So every state in Si+l is the beginning of an infinite

path of states remaining in SM c notjinal. Moreover, R' n start * 0 (otherwise the algo-

rithm would have exited inside the loop). Therefore some state s e Si+i belongs to start.

This state then is the beginning of an infinite path starting at a state in start, which never

reaches a state in final. Infinity is then correct return value.

If R' n start = 0, then by the invariant R' = Si+h we know that there is no interval of i+l

states contained in notjinal beginning in a state in start. No longer interval can exist since

this would contradict the absence of an interval of i + 1 states, so we have M < i. But we

also have the invariant i < M, so it must be the case that M = i, which is the correct return

value.

Lemma 25 [Correctness of the maximum algorithm] Let st = (start x sat(j)),fn = (final x

prop),

notjinal = ~^finalp A E[-ifinalp U (propp Afinalp)]

and £ be the value returned by maximum(st,fn, notjinal) when applied to P.

• k < 00 is the size of a longest interval from start to final in M, that satisfies/.

• If k = 00 then there is no bound on the sizes of the intervals from start to final in M, that

satisfy/.

Proof If maximum(st, fit, notjnal) returns k, then by Lemma 24 the size of a longest

interval from st that lies entirely within notjinal is k-1. Let [p0,..., pk.{\ be such an inter-

val. We first show that/?^ has a successor pk, and thatp^ \=propp Afinalp In other words,

pk e (final x prop).

134 A Quantitative Approach to the Formal Verification of Real-Time Systems

Selective Quantitative Analysis and Interval Model Checking

The state pkA is in notjinal, thus pkA |= -,finalp A E[->finalp U (propp Afinalp)]. Since

Pk-i N ->finalp, the only way for it to satisfy also E[->firialp U (propp Afinalp)] is by hav-

ing a successor pj. such thatpk \= E[->finalp U (propp Afinalp)].

Assume that pkfifinalp. Then, pk \= -afinalp A E[-,finalp U (propp Afinalp)], i.e. ;?*. e

notjinal. But this contradicts the fact that pk.x is the last state of a longest interval. Thus,

pk \= final and since it satisfies E[-<finalp U (propp Afinalp)], it must also satisfy propp.

Thus, if maximum(st, fn, notjinal) returns k, k is the size of a longest interval from st =

(start x satif)) to fii = (final x prop) in P. Using arguments similar to those for the mini-

mum algorithm we conclude that the size of the longest interval from start to final in M

that satisfies/is k.

The proof in case maximum(st,fn, notjnal) returns ~ also follows the same reasoning as

in the minimum case.

Correctness of the Interval Model Checking Algorithm

Lemma 26 If minimum(st, fn) applied to P as described in the interval model checking

algorithm returns infinity, then all pure intervals in M satisfy formula/.

Proof Lemma 23 guarantees that if minimum((start x sat(g)), (final x prop)) returns °°,

then there is no interval from start to final in M that satisfies g. If g = -if, this means that

all intervals from start to final in M satisfy/. We conclude that all pure intervals from start

to final in M satisfy/.

A Quantitative Approach to the Formal Verification of Real-Time Systems 135

Verification Algorithms

5.6 Lazy Composition

The high complexity of verifying real-time and other concurrent systems arises mostly
from the number of parallel components in the system. The number of states of the state-

transition graph representing the model can grow exponentially with the number of con-
current components in the system. Even symbolic algorithms that do not explicitly repre-

sent individual states suffer from this exponential blowup. However, even though

extremely expensive, the parallel composition algorithm is vital to verification tools,

because the large majority of real systems is described by a set of concurrent processes.

Given a set of processes, each modeled by a state-transition graph, a. parallel composition

algorithm is used to create a global state-transition graph which models all processes and
their interaction. There are different ways to model the interaction between processes. One
common way is the synchronized composition model. Under this model one step in the
global model corresponds to exactly one step in each process. In other words, all processes

execute synchronously.

Besides synchronous composition, another common composition model is interleaving

composition. In this model only one process executes at each step of the global model.
The choice of which process executes is nondeterministic and fairness assumptions are

used to avoid starvation. Interleaving composition is not well suited for modeling real-
time systems. The reason is that since the choice of which process executes next is nonde-
terministic, there is no way to bound the execution time of a process. While fairness can
be used to avoid starvation, it cannot be used to bound response time. Fairness assump-
tions state that some property of the model will eventually be satisfied, but there are no
restrictions on when this must happen. As a consequence, any process can always be
delayed for one extra step, effectively making all response times potentially unbounded.

In Verus the synchronous composition model is used. The symbolic parallel composition
algorithm used is extremely simple: Given a set of boolean formulas R0, Rh ..., Rn

136 A Quantitative Approach to the Formal Verification of Real-Time Systems

Lazy Composition

describing the transition relation of each process, the global transition relation R is con-

structed by conjuncting all RjS:

R = ^i = O..M Ri-

Each R, is a formula such that 2?,(v, v') is true for states v and V iff when process P2- is in

state v it can transition to state V. Consequently, the global transition relation R is a for-
mula such that R(v, V) is true for states v and V iff all processes can transition from state v

to state V, that is, all processes transition at the same time.

Unfortunately, the size of R can be several orders of magnitude larger than the sum of the
sizes of all Rt. Some techniques exist to handle this blowup, such as partitioned transition

relations [8]. The partitioned transition relation algorithm modifies the algorithm to com-
pute the set of successors of a state set S. In the original algorithm S is conjuncted with the
transition relation R and then the current state variables are quantified out of the result

(See "The Model Checking Algorithm" on page 40.). The partitioned transition relation
algorithm changes the order in which the conjunction and quantification are performed.

Partitioning the transition relation consists of dividing it into separate partitions, in much
the same way as the transition relation of each process of the global system can be sepa-
rated from the others. It is then possible to quantify out variables before conjuncting all
components when computing the set of successors of a state set, provided that those vari-
ables are not used by the unprocessed partitions. In some cases significant gains can be
obtained by this method, since the global transition relation is never constructed.

The problem with partitioned transition relations is that they are very sensitive to the order
in which processes are considered for early quantification. As a consequence, in order to
use the method efficiently the user must understand how variables interact in the model,

and must choose the right order to apply early quantification.

An alternative approach is used in Verus, lazy composition. In the same way as partitioned
transition relations the global transition relation is never constructed. However, different

A Quantitative Approach to the Formal Verification of Real-Time Systems 137

Verification Algorithms

than the previous method a restricted transition relation of all processes is created at each

step. The restricted transition relation agrees with the global transition relation for states in
the state set of interest, but it may behave in a different way for other states. The advan-
tage comes from the fact that in many cases it is possible to construct a restricted transition

relation that is significantly smaller than the global transition relation.

There are many possible ways of constructing a restricted transition relation that would

produce correct results. Given an original global transition relation R and a state set/, the

computation of the set of successors of/can use any restricted transition relation R' that

satisfies the following condition:

R'\f=R\f

The formula above means that R and R' agree on transitions that start in states in/ It is
possible to represent R' with significantly fewer nodes that R in some cases by using the
constrain operator from [26]. For two boolean formulas/and g,f = constraint/, g) is a
formula that has the same truth value as / for variable assignments that satisfy g. If the
variable assignment does not satisfy g, the value of/ is not determined. In many cases the

size of/ is significantly smaller than the size of/

The lazy composition algorithm uses the constrain operator to simplify the transition rela-
tion of each process before generating the global restricted transition relation. When com-
puting the set of successors of a state set S (represented by a boolean formula) the

algorithm computes:

R' = Aj- _ o..M constrain(Ri, 5)

Each transition R't = constrain{Rt, S) agrees with Rt on transitions that start in S by the

definition of the constrain operator. As a consequence, the transition relation R' agrees
with the global transition relation R on transitions that start S as well. Therefore, comput-
ing the set of successors of S using R' produces the same result as using R. The same
method can be applied when computing the set of predecessors of a state set.

138 A Quantitative Approach to the Formal Verification of Real-Time Systems

Lazy Composition

The constrain operator has been initially used to simplify the set of states visited during

verification in a technique called frontier set simplification. This work is described

in [9,26]. The same operator has also been applied to simplify the transition relation in a

more restricted way as described in [62,73]. An important difference between these meth-

ods and ours is that the structure of the Veras language makes it natural to partition the

transition relation into processes. In a well designed program the variables that interact

more closely are usually in the same process, consequently sharing the same partition.

This makes the method very effective.

We have implemented the lazy composition algorithm and obtained significant gains in

space and time during verification. In one example the verification was previously per-

formed in 40 seconds using 12 megs of memory, which dropped to 18 seconds and 1 meg

of memory using the proposed method. The same example verified with partitioned transi-

tion relations used about the same time, but twice the memory used by the lazy composi-

tion algorithm.

A significant part of the savings come from not constructing the global transition relation.

These savings were also present in the partitioned transition relation case. However the

new method used much less memory. The reason seems to be that partitioned transition

relations are heavily influenced by the order in which partitions are processed, because

this order determines which variables can or cannot be quantified out early. In the pro-

posed method this does not happen, all variables are quantified out at the same time. This

makes it less susceptible to the order in which partitions are processed, and more suitable

to be used in the cases in which determining the processing order can be difficult. It also

makes the new technique easier to automate.

A Quantitative Approach to the Formal Verification of Real-Time Systems 139

Verification Algorithms

140 A Quantitative Approach to the Formal Verification of Real-Time Systems

Chapter 6 Analyzing Real
Systems

The Veins approach is a practical one. It can be (and has been) applied to real problems.
This chapter describes several examples that have been verified and the results produced
by the technique. The presentation not only demonstrates the usefulness of the method
proposed, but also explains how the tool can be used and how results can be interpreted. In
many cases our analysis has been able not only to determine correctness, but also to
uncover subtleties in the behavior of the system being verified and to suggest optimiza-
tions. These examples can be used as a guide to verifying other systems. The method is by
no means restricted to produce the types of information described, but hopefully the
examples presented in this chapter can serve as a starting point to perform similar and

even more complete analyses in the future.

6.1 A Priority Inversion Example

Priorities are essential in real-time systems. The correct ordering of task execution is a
fundamental problem that must be solved if the system is to be predictable. Many schedul-
ing policies have been developed to define what constitutes a correct ordering and to
enforce this ordering during the execution of the system. Most scheduling policies require
that higher priority tasks execute before lower priority tasks. However, even in this case, it

A Quantitative Approach to the Formal Verification of Real-Time Systems 141

Analyzing Real Systems

is sometimes possible for a low priority process to be executing while a higher priority one

is blocked. This situation is called priority inversion [66]. Unbounded priority inversions

occur when high priority processes are blocked indefinitely by low priority processes.

When this happens, the system becomes unpredictable. The correct ordering of task exe-

cution will be compromised, and the system may fail to satisfy its specification.

In order to present the problem in a more concrete framework, we will introduce a hypo-

thetical air-traffic control system. This example is not associated with a real system, but

illustrates a problem that can affect virtually any real-time system and cause it to become

unschedulable. We will concentrate our analysis in two of the processes in the system. The

first, called sensor, reads airplane position data from radars, sets alarms on catastrophic

conditions (conditions that cannot wait for a detailed analysis), and puts the data into

shared memory. The other process is the reporter. It reads the data collected by the sensor,

and updates the traffic controller screens. The sensor is a high priority process since it pro-

cesses urgent events, and must not be blocked by other processes. The reporter on the

other hand, is a low priority process. Since it doesn't process urgent events, it may be

delayed by other more important tasks.

The sensor and the reporter processes share data. To access shared data appropriately,

synchronization is necessary. In our system, synchronization is implemented by a mutex

variable which guarantees mutual exclusion among the processes accessing the data. The

mutex variable is locked every time shared data is accessed. However, this may result in

priority inversion, as shown in the following scenario. Suppose the reporter is inside the

critical section, and the sensor tries to insert new data into the buffer area. The sensor

can't access the data and blocks, since it is waiting until the reporter unlocks the mutex.

At this point a high priority process is waiting for a low priority one, and priority inversion

occurs. This situation is shown in figure 27. This figure shows which process is executing

at any time. The shaded areas indicate that the process is accessing the mutual exclusion

area, and the arrows indicate requests for and releases of mutexes.

142 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Priority Inversion Example

This priority inversion scenario is bounded, the sensor cannot be blocked indefinitely. The
reporter will delay the sensor only while it is inside the critical section. After the reporter

releases the lock, the sensor will start executing, and the priority inversion will disappear.

We can calculate the maximum duration of the priority inversion as the time to execute the

largest critical section, and incorporate it in our calculations for the execution times. The
system will still be predictable, although there may be a little loss in accuracy in execution
time predictions. Consequently, if the system is well designed, and the critical sections are
small, bounded priority inversions can be tolerated without sacrificing predictability.

Priority Priority Inversion

Screens Radars

Reporter Sensor

m
Memory

i L 4 ►

Km)
_4

u(m)

Sensor d ~\ 3d 1

1 1
1 1
1 1
| |

r

Km)

Reporter m U>*
Km) ►

time

Figure 27. Bounded priority inversion

In certain cases it is possible to have unbounded priority inversions that cannot be solved
by this simple method. Suppose a third process, called the analyzer is added to the system.
This process reads data generated by other components of the air-traffic controller and
processes it. The analyzer is less important than the sensor and has a lower priority. But it
is more important than the reporter, since urgent conditions may arise as the result of the
analysis and handling them is more important than updating the screens. Consider now the
same scenario as above, with the reporter inside the critical section, and the sensor wait-
ing on the mutex. At this point, the analyzer starts executing. It will block the reporter,

since it has higher priority. However, the sensor is waiting for the reporter (and therefore

A Quantitative Approach to the Formal Verification of Real-Time Systems 143

Analyzing Real Systems

also for the analyzer). Since the analyzer doesn't know the relation between the reporter

and the sensor, it may execute for an unbounded amount of time and delay the sensor

indefinitely. If a catastrophic event occurs, it will go unnoticed, because the sensor is

blocked. The behavior of the system becomes unpredictable. This unbounded priority

inversion can be seen in figure 28.

Priority inheritance protocols are one way of preventing unbounded priority inversions

[66]. A typical protocol might work in the following manner. As soon as a high priority

process is blocked by a low priority one, the low priority process is temporarily given the
priority of the blocked process. In our example, while inside the critical section the sensor

is trying to access, the reporter will execute at high priority. When the reporter exits the

critical section, it will be restored to its original priority. In this way, the analyzer will not
be able to interrupt the reporter when the sensor is waiting. We will show that this proto-
col avoids the unbounded priority inversion problem (except possibly for deadlocks in
accessing synchronization variables). This allows the designer of the system to predict the

maximum priority inversion time, as in the bounded case.

Priority Priority Inversion
< ►

Screens Radars
i i

i '

Reporter Analyzer Sensor

X ik

/ '
m

Memory

Sensor

Analyzer

Reporter

Km) "(m)

i t
i i

i i i
ii

Km) u(m)

time

Figure 28. Unbounded priority inversion

144 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Priority Inversion Example

Priority inversion occurred in this example because the analyzer preempted the reporter.

Another cause of priority inversion is queueing. Communication protocols may experi-

ence priority inversion for this reason. For example, packets to be sent to the network may

have priorities. Low priority packets may be enqueued ahead of high priority ones in some

protocol queue. In a prioritized network a high priority packet may have to wait for a low

priority one to be sent. If medium priority packets start arriving in another processor's

queue, they may monopolize the network, preventing high priority packets from being

sent. Again, we have unbounded priority inversion. This type of priority inversion could

also happen in our system, if the different components were distributed over a network.

For example, sensor packets could be queued after some low priority packets in a queue,

while analyzer packets were being transmitted.

The inheritance mechanism that we have described to avoid unbounded inversions is

called basic priority inheritance protocol. There are other priority inheritance protocols.

Some protocols are designed to avoid deadlocks caused when critical sections are

accessed in the wrong order. Other protocols are designed to handle chained bounded pri-

ority inversions. A chained inversion occurs when a high priority process wants to lock

n mutexes that are already locked by low priority processes. In this case, the high priority

process has to wait for all low priority processes to finish their critical sections. While this

wait is bounded, it may be too expensive to wait for the duration of all critical sections.

One possible solution to this problem is to assign priorities to critical sections, based on

the priorities of the processes that may access it. A process is allowed to access a critical

section only if its priority is higher than the priority of all critical sections currently being

accessed. A more complete study of these various algorithms and their characteristics can

be found in [66].

We have used Verus to implement and analyze a real-time system that is susceptible to pri-

ority inversion. The example follows the sensor—analyzer—reporter paradigm presented

above, but with some important differences. There is no scheduler choosing which process

runs next, all processes run concurrently. However, a mutex control module chooses

which process will lock the variable next, and when there is contention, high priority pro-

A Quantitative Approach to the Formal Verification of Real-Time Systems 145

Analyzing Real Systems

cesses are chosen first. In this case the queueing of processes in the mutex control module

may cause priority inversion. In the example we have the same three processes as above,
the sensor, the analyzer and the reporter, with high, medium and low priorities, respec-
tively. There are also two mutex variables, Ml and M2, controlling two critical sections.
The sensor uses the critical section controlled by Ml, the analyzer uses the one controlled
by M2, and the reporter locks both variables, first Ml and then M2. The mutex Ml controls
access to the area shared by the sensor and the reporter as explained above. The mutex M2

controls a shared area where the analyzer puts its results. These results will in turn be read

by the reporter to be printed on the screen. The Verus code that implements the system is

given below. We start by presenting the simplest version that suffers from priority inver-

sion, and then proceed to change the design to correct the problem.

1 sensor(Ml, req)

2 int Ml;

3 boolean req;

3 {
4 extern boolean proceed;

5 boolean start, finish;

6

7 req = false;
8 start = false; finish = false;

The parameters and local variables of the sensor are declared above. The parameter Ml is
the first mutex variable, and req is used by sensor to request access to Ml. The variable
proceed is used to decide when the process will try to lock Ml. It can wait indefinitely
outside the critical region, but it can also decide at any time to proceed. By declaring
proceed as an external variable, we allow it to change non-deterministically, effectively

modeling the desired behavior, as will be seen shortly. The variables start and finish

are used to flag the beginning and end of execution of sensor.

146 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Priority Inversion Example

The sensor executes continuously. Line 9 starts an infinite loop inside which sensor exe-

cutes. Line 10 stops the process until the variable proceed is true. Since proceed is an

external variable, it can become true at any time. The process will then wait for a non-

deterministic amount of time before proceeding. This models the behavior that sensor may

decide to access the critical region at any time, or never at all.

9 while (true) {

10 while (!proceed) wait(l);

Once it decides to proceed, sensor flags that it wants to access the mutual exclusion region

in line 11 by asserting the variable req. This variable is used by the mutex control module

to decide which process accesses the mutual exclusion region first. In line 12 the process

flags that it has started executing and waits until the mutex variable Ml indicates that it has

been granted the mutual exclusion region (line 13). The process rt_mutex (described

below) guarantees that only one process at any point will be granted mutual exclusion.

11 req = true;

12 start = true;
13 while (Ml != 1) (wait(l); start = false; };

Lines 14 to 16 correspond to the sensor accessing the critical region for three time units.

Notice that the variable start is asserted in line 12 and deasserted either in line 13 or 15.

This pattern guarantees that start will be true for only one time unit, when sensor

decides to execute. It is important for the computation of accurate response times that it is

asserted for only one time unit. For example, if start is not deasserted in line 13 after

the wait, start would correspond to the time interval between requesting the mutual

exclusion until it is granted, and not the time instant that the process starts executing.

/* Ml is locked */ 14 wait(1);

15 start = false;

16 wait(2);

A Quantitative Approach to the Formal Verification of Real-Time Systems 147

Analyzing Real Systems

Line 17 signals the mutex control module that sensor does not require mutual exclusion
anymore. Line 18 flags that it has ended its execution. Line 20 is used to guarantee that
finish is also asserted for only one time unit. Line 19 is important to make the effect of
line 18 observable to other processes. If there was no wait statement in line 19, the vari-
able finish would be asserted and deasserted in the same cycle, nullifying the assertion.

17 req = false;

18 finish = true;

19 wait(1);

20 finish = false;

21 };

22 }

/* Ml is unlocked */

The analyzer process is shown above. It is very similar to the sensor process, except that it

requests the mutex M2 instead of Ml.

23 analyzer(M2, req)

24 int M2;

25 boolean req;

26 {

27 extern boolean proceed;

28 boolean start, finish;

29

30 req = false;

31 start = false; finish = false;

32 while (true) {

33 while (Iproceed) wait(l);

34 req = true;

35 start = true;

36 while (M2 != 2) (wait(l); start = false,-};

37 wait(l); /* M2 is locked */

38 start = false;

148 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Priority inversion Example

39 wait(2);

40 req = false;

41 finish = true;

42 wait(1);

43 finish = false;

44 };

45 }

/* M2 is unlocked */

The reporter has a similar structure to both the sensor and the analyzer. The main differ-

ence is that it accesses both Ml and M2.

46 reporter(Ml, M2, reqMl, reqM2)

47 int Ml, M2;

48 boolean reqMl, reqM2;

49 {

50 extern boolean proceed;

51 boolean start, finish;

52
53 reqMl = false; reqM2 = false;

54 start = false; finish = false;

55 while (true) {

56 while (Iproceed) wait(l);

Initially, the reporter requests Ml.

57 reqMl = true;

58 start = true;

59 while (Ml != 3) {wait(l); start = false;};

60 wait(l); /* Ml is locked */

61 start = false;

Once Ml is locked, the reporter locks M2.

A Quantitative Approach to the Formal Verification of Real-Time Systems 149

Analyzing Real Systems

62 reqM2 = true;

63 while (M2 != 3) wait(l);

64 wait(3); /* M2 is locked */

Finally, it unlocks both mutexes.

65 reqM2 = false;

66 regMl = false;

67 finish = true;

68 wait(l); /* both are unlocked */

69 finish = false;

70 };

71 }

The process that controls access to the mutual exclusion regions is shown next. It has as

outputs the mutex variables Ml and M2. The inputs are the requests from all processes,

s_reqMl comes from the sensor, a_reqM2 comes from the analyzer, and r_reqMl

and r_reqM2 come from the reporter.

72 rt_mutex(Ml, M2,

73 s_reqMl, a_reqM2, r_reqMl, r_reqM2)

74 int Ml, M2;

75 boolean s_reqMl, a_reqM2, r_reqMl, r_reqM2;

76 {

Initially both mutexes are unlocked. The process then enters an infinite loop in which it

receives requests and grants mutexes. The decision is based on a straightforward policy, if

no one is requesting, the mutex stays unlocked (line 80). If only one process is requesting,

the mutex is granted to it (lines 81 and 82). If both are requesting (line 83) the mutex is

granted to process 1 (the sensor), since it has higher priority. The lower priority process

may starve according to this policy, but this is allowed in real-time resource management.

Notice that if there is contention we must wait until the current owner of the mutex

150 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Priority Inversion Example

releases it before changing its value. This is needed because mutual exclusion regions can-

not be preempted.

77 Ml = 0;

78 M2 = 0;

79 while (true) {

80 if (!s_reqMl && !r_reqMl) Ml = 0; else

81 if (s_reqMl && !r_reqMl) Ml = 1; else

82 if (!s_reqMl && r_reqMl) Ml = 3; else

83 if (Ml == 0) Ml = 1;

The rt_mutex process is completed by handling M2 in the same way as Ml.

84 if (!a_reqM2 && !r_reqM2) M2 = 0; else

85 if (a_reqM2 && !r_reqM2) M2 = 2; else

86 if (!a_reqM2 && r_reqM2) M2 = 3; else

87 if (M2 ==0) M2 = 2;

88 wait(l);

89 };

90 }

Finally, main declares the mutex variables and instantiates all processes.

91 main()

92 {

93 int Ml, M2;

94 boolean s_reqMl, a_reqM2, r_reqMl, r_reqM2;

95

96 process

97 pi sensor(Ml, s_reqMl),

98 p2 analyzer(M2, a_reqM2),

99 p3 reporter(Ml, M2, r_reqMl, r_reqM2),

A Quantitative Approach to the Formal Verification of Real-Time Systems 151

Analyzing Real Systems

100 pO rt_mutex(Ml, M2, s_reqMl, a_regM2,

101 r_reqMl, r_reqM2);

102 }

Stuttering
The program presented above implements the system described. However, one of the

characteristics of the model generated from this program differs from the actual system. In

Verus all processes are synchronized, that is, one step of the global model corresponds to

exactly one step in each process. In the actual implementation of the system this is not a

correct assumption, processes execute asynchronously. This has important consequences

in the behavior of the model. For example, in the model above unbounded priority inver-

sion does not occur, it is avoided by the implicit dependencies introduced by the synchro-

nization of the modules. However, these dependencies do not exist in the real system, and

must be eliminated. This is accomplished by a technique called stuttering. It has the effect

of making a transition in the model take a nondeterministic number of time units to occur,

eliminating implicit synchronization dependencies. An improved rt_mutex process is

shown below that models the correct asynchronous behavior. The integer variable s tut is

used to determine when mutex decisions should take place. A decision about granting the

mutex must be made if stut is zero, but it may or may not be made otherwise. Since

stut is continuously incremented (modulo 10), a decision can be delayed up to 10 time

units, but no longer.

The difference between the original rt_mutex and the new one is the use of the stut

variable. Lines 81 and 82 have been replaced, now the decision about granting the mutex

depends on the value of stut.

72 rt_mutex(Ml, M2,

73 s_reqMl, a_reqM2, r_reqMl, r_reqM2)

74 int Ml, M2;
75 boolean s_reqMl, a_reqM2, r_reqMl, r_reqM2;

76 {

152 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Priority Inversion Example

77 int stut;

78

79 Ml = 0;

80 M2 = 0;

79 while (true) {

80 if (!s_reqMl && !r_reqMl) Ml = 0; else

81 if (s_reqMl && !r_reqMl && Ml != 1) {

82 if (stut == 0) Ml = 1; else

83 Ml = select{0, 1};

84 } else

85 if (!s_reqMl && r_reqMl && Ml != 3) {

86 if (stut == 0) Ml = 3; else

87 Ml = select{0, 3);

88 } else

89 if (Ml ==0) Ml = 1;

Mutex M2 is handled in the same way.

90 if (!a_reqM2 && !r_reqM2) M2 = 0; else

91 if (a_reqM2 && !r_reqM2 && M2 != 2) {

92 if (stut == 0) M2 = 2; else

93 M2 = select{0, 2};

94 } else

95 if (!a_reqM2 && r_reqM2 && M2 != 3) {

96 if (stut == 0) M2 = 3; else

97 M2 = select{0, 3};

98 } else

99 if (M2 ==0) M2 = 2;

Finally, the value of stut is incremented at each step as seen below. The value is contin-

uously incremented modulo 10.

A Quantitative Approach to the Formal Verification of Real-Time Systems 153

Analyzing Real Systems

100 if (stut < 10) stut = stut + 1; else

101 stut = 0;
102 wait(l);

103 } ;

104 }

We have analyzed the model above using RTCTL model checking and the quantitative

algorithms described. The first property verified is mutual exclusion. One way to check if

the access to the critical sessions is exclusive is to create variables that are asserted when

the process enters the critical region, and deasserted when it leaves the region. These vari-

ables are similar to the start and finish variables presented above. We can then write

a CTL formula that states that no two of these variables are asserted at the same time.

There is another way of checking the same property without adding variables to the

model. Notice that each process is inside the critical region when it goes through some

specific wait statements in the program. The sensor processor is inside the critical region

controlled by Ml when it executes the wait statements 3, 4 and 5 in the source code. The

analyzer is inside M2 when it executes waits 3, 4 and 5. The reporter is inside Ml when it

executes the waits between 3 and 7, and inside M2 when it executes waits 5 to 7.

Since the wait counters are variables in the model, it is possible to write CTL formulas

that reference them and check to see if any critical region is being violated. The region

controlled by Ml can be checked by the formula:

AG ! {sensor_in_Ml && reporter_in_Ml)

where sensor_in_Ml is

(sensor.wc == 3 || sensor.wc == 4 || sensor.wc == 5)
and reporter_in_Ml is

(reporter.wc == 3 | | reporter.wc == 4 | | reporter.wc == 5 | |
reporter.wc == 6 || reporter.wc ==7))

154 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Priority Inversion Example

Finally, the region controlled by M2 is checked by the formula:

AG ! {analyzer_in_M2 && reporterJn_M2)

where analyzer_in_M2 is

(analyzer.wc == 3 || analyzer.wc == 4 || analyzer.wc == 5)

and reporter-_in_M2 is

(reporter.wc == 5 || reporter.wc == 6 || reporter.wc == 7)

Properties about the response time of the processes in the model have also been checked.

We have found that the analyzer has a bounded response time, the following property is

true of the model:
AG(analyzer.start -» AF< 15 analyzer.finish)

However, the sensor process can starve. The following sequence of events leads to an

unbounded priority inversion:

• The reporter locks Ml.

• The analyzer locks M2.

• The sensor wants to lock Ml, but it is already locked, so it waits.

• The reporter wants to lock M2, but it is locked, so it waits.

• The analyzer is continuously generating data, and after unlocking M2, it locks the

mutex again to insert new data into the buffer. The reporter never locks M2, since it has

lower priority than the analyzer.

• The sensor is waiting for the reporter, and the reporter is waiting indefinitely for the

analyzer. Therefore, the sensor is blocked by the analyzer indefinitely.

We have implemented the basic priority inheritance protocol described previously to solve

this problem. The solution works as follows. Whenever the sensor is waiting for the

reporter, the task being executed by the reporter becomes a high priority task. We then

A Quantitative Approach to the Formal Verification of Real-Time Systems 155

Analyzing Real Systems

make the reporter a high priority process temporarily, so it will release the lock the sensor

wants faster. The analyzer eventually notices that the reporter has become a high priority

process. At this point it will yield M2 to the reporter. After unlocking Ml, the reporter will

have its old priority restored.

To implement priority inheritance we can easily change the Veras program above. A bool-

ean variable M2inherit is declared. It will signal when the priority inheritance mecha-

nism must be activated. The initial value for this variable is false, and it becomes true

whenever the sensor tries to lock Ml. In the code for the sensor process, lines 13 and 14

are replaced by:

13 while (Ml != 1) {

14 M2inherit = true;

15 wait(1);

16 start = false;

17 };

18 wait (1);

19 M2inherit = false;

/* Ml is locked */

In the rt_mutex process we must make sure that whenever M2inherit is true, the

reporter is given priority over the analyzer. This is implemented by replacing line 99 in the

rt_mutex code by:

99 if (M2 == 0) {

100 if (M2inherit) M2 = 3; else

101 M2 = 2;

102 } ;

The modifications proposed guarantee that there is no unbounded priority inversion in the

system. The sensor now has a bounded response time, as attested by the following prop-

erty of the model:

KG{sensor.start -4 AF< 30 sensor.finish)

156 A Quantitative Approach to the Formal Verification of Real-Time Systems

An Aircraft Controller

In fact, by using quantitative analysis we have determined the exact best and worst case

response times for the processes:

Process Min. time Max. time

sensor

analyzer

reporter

3

3

4

26
oo

oo

Conclusions
This example shows that priority inversion is an important problem that can affect the
behavior of real-time systems in subtle but significant ways. It can make even simple sys-
tems unpredictable. In the example we also discuss a solution, priority inheritance, and
show how it can make the system predictable by bounding the maximum priority inver-

sion time.

We also demonstrate in this example how the Verus language can be used to specify and
analyze a real-time system. The Verus code for the system is fully presented as well as its
analysis. It shows how Verus can be used to describe and analyze complex systems. The
description is detailed enough to hopefully serve as a starting point for writing programs
describing similar systems. The analysis performed is very straightforward, but this is by
no means a restriction on the method. The following sections will describe more sophisti-

cated examples and analyses.

6.2 An Aircraft Controller

One of the most critical applications of real-time systems is in aircraft control. It is
extremely important that time bounds are not violated in such systems. This section briefly
describes an aircraft control system used in military airplanes. We have attempted to make
this model as realistic as possible. It is shown how some of its timing constraints can be

checked using the quantitative algorithms described.

A Quantitative Approach to the Formal Verification of Real-Time Systems 157

Analyzing Real Systems

System Description

The control system for an airplane can be characterized by a set of sensors and actuators

connected to a central processor. This processor executes the software to analyze sensor
data and control the actuators. Our model describes this control program and defines its

requirements so that the specifications for the airplane are met. The requirements used are

similar to those of existing military aircraft, and are derived from those described in [60].

The aircraft controller is divided into systems and subsystems. Each system performs a
specific task in controlling a component of the airplane. The most important systems are

implemented in our model to provide a realistic representation of the controller. The sys-

tems being controlled are:

• Navigation: Computes aircraft position. Takes into account data such as speed, altitude,
and positioning data received from satellites or ground stations.

• Radar Control: Receives and processes data from radars. It also identifies targets and

target position.

• Radar Warning Receiver: This system identifies possible threats to the aircraft.

• Weapon Control: Aims and activates aircraft weapons.

• Display: Updates information on the pilot's screen.

• Tracking: Updates target position. Data from this system are used to aim the weapons.

• Data Bus: Provides communication between processor and external devices.

Each system is composed of one or more subsystems. Timing constraints for each sub-
system are derived from factors such as required accuracy, human response characteristics
and hardware requirements. For example, the screen must be updated frequently enough
so that motion appears continuous. To accomplish this, the update must occur at least once
every 50 ms. The following table presents the subsystems being modelled, as well as their
major timing requirements. The priority assignment will be explained subsequently.

158 A Quantitative Approach to the Formal Verification of Real-Time Systems

An Aircraft Controller

Execution %CPU
System Subsystem Period Time Utilization Priority

Display status update 200 3 1.50 12

keyset 200 1 0.50 16

hook update 80 2 2.50 36

graphic display 80 9 11.25 40

store update 200 1 0.50 20

RWR contact mgmt. 25 5 20.00 72

Radar target update 50 5 10.00 60

tracking filter 25 2 8.00 84

NAV nav update . 50 8 16.00 56

steering cmds. 200 3 1.50 24

Tracking target update 100 5 5.00 32

Weapon weapon protocol 2001 1 0.50 28

weapon aim 50 3 6.00 64

weapon release 2002 3 1.50 98

Data Bus poll bus devices 40 1 2.50 68
1 Weapon protocol is an aperiodic process with a deadline of 200 ms.
2 Weapon release has a period of 200 ms, but its deadline is 5 ms.

Figure 29. Timing requirements for aircraft controller

Concurrent processes are used to implement each subsystem. Communication among the
various processes is done indirectly. No data are shared directly by two subsystems. Pro-
cesses communicate only through data servers called monitor tasks. Each system main-
tains a server process that accepts requests for data, and returns the desired information.
The various subsystems in each system update the data in the servers. Monitor tasks only
accept requests, respond to them, and then block. They are assigned low priority, and pri-

ority inheritance is used to maintain predictability [11,66].

A Quantitative Approach to the Formal Verification of Real-Time Systems 159

Analyzing Real Systems

With the exception of the weapon system, all other systems contain only periodic pro-
cesses, which are scheduled to execute at the beginning of their period. When a process is
granted the CPU it acquires the data it needs through the monitor tasks, executes, updates
information on its own data server, and blocks waiting for its next execution period.

The weapon system contains a mixture of periodic and aperiodic processes. It is activated

when the display keyset subsystem identifies that the pilot has pressed the firing button.

This event causes the weapon protocol subsystem to be activated. It then signals the

weapon aim subsystem that had been blocked. Weapon aim is then scheduled to be exe-

cuted every 50 ms. It aims the aircraft weapons based on the current position of the target.

It also decides when to fire and then starts the weapon release subsystem. The firing
sequence can be aborted until weapon release is scheduled, but not after this point.
Weapon release then executes periodically and fires the weapons 5 times, once per second.

In order to enforce the different timing constraints of the processes, priority scheduling is
used. Predictability is guaranteed by scheduling the processes using Rate Monotonie

Scheduling (RMS) [50,59].

Model of the Aircraft Control System
We have modeled this control system in the Veras system. Model checking has been used
to verify its functional correctness, while its timing correctness has been checked using
the quantitative algorithms described previously. Most of the characteristics described
above were implemented, although some abstractions have been performed for simplicity.

A more detailed description of the implementation follows.

A time quantum of 1 ms was used, in other words, a transition corresponds to a delay of
1 ms in our model. A global timer is implemented that starts periodic processes when their
period arrives. Whenever awakened, a process requests execution and waits until it has
been granted the CPU. The process then runs for its defined execution time. An internal
counter stores the time since execution has started. After executing, the process releases

the CPU and blocks, waiting for the next period.

160 A Quantitative Approach to the Formal Verification of Real-Time Systems

An Aircraft Controller

The time to request data from a monitor task and wait for the response is assumed to be
small compared to the total execution time. This is reasonable if we assume an efficient
implementation. Sending request and response messages takes only a small amount of
time. Processing in the monitor tasks is also fast, considering the limited range of func-
tions performed. The assumption can only be violated if blocking due to synchronization

is long. The access pattern to the monitor tasks, however, minimizes this possibility. They

simply receive requests, retrieve data from memory, and return it. There are no nested crit-
ical sections. Moreover, the priority inheritance protocols used maintain predictability and

eliminate the possibility of unbounded blocking due to synchronization [11,66]. Since
blocking times can be computed, we assume they are included in the execution time
defined. A more detailed model can be constructed to remove this assumption, but because
of the reasons outlined above, we believe this would not change the results significantly.
In order to optimize response time, we have implemented a preemptive scheduler. It

accepts requests for execution and chooses the highest priority process requesting the
CPU. If a request arrives from a higher priority process after execution has started, the
scheduler preempts the executing process and starts the higher priority one. When
a process finishes executing it resets its request, and the scheduler chooses another pro-
cess. If data were shared directly, synchronization could cause deadlocks. This could hap-
pen, for example because of cyclic dependencies among locks. Monitor tasks avoid this
problem because they eliminate the possibility of complex data dependencies.

We have also implemented a non-preemptive scheduler. Preemptability is a feature that
may not always be available, and we wanted to observe the effects of removing this fea-
ture from the model. In this case, once a process starts executing, it continues executing
until it voluntarily releases the CPU. If a higher priority process requests execution, it has
to wait until the running process finishes. Non-preemptive schedulers usually cause
response time for higher priority processes to be higher. They are, however, simpler
to implement, and allow for simpler programs (for example, the deadlock problem
described above does not exist if no preemption occurs). Having both types of scheduler

in our model allowed us to extend our results to a larger class of systems.

A Quantitative Approach to the Formal Verification of Real-Time Systems 161

Analyzing Real Systems

Verification Results
Schedulability is one of the most important properties of a real-time system. It states that
no process will miss its deadline. In this example the deadlines are the same as the periods
(except for the weapon release subsystem). The following table summarizes the execution
times computed by the algorithms. Processes are shown in decreasing order of priority.

Deadlines are also shown so that schedulability can be easily checked. Minimum and
maximum execution times are given for both preemptive and non-preemptive schedulers.

Exec. Times Exec. Times
Subsystem Deadline Preemptive Non Preemptive

Weapon release 5 [3,3] [3,9]

Radar tracking filter 25 [2,5] [2,10]

RWR contact mgmt. 25 [7,10] [7,15]

Data bus poll 40 [1,11] [1,14]

Weapon aim 50 [10,14] [2,18]

Radar target update 50 [12,19] [12,19]

NAV update 50 [20,34] [20,27]

Display graphic 80 [10,44] [10,43]

Display hook update 80 [14,46] [14,47]

Tracking target update 100 [26,51] [26,51]

Weapon protocol 200 [1,21] [3,46]

NAV steering cmds. 200 [35,85] [36,74]

Display store update 200 [36,95] [37,97]

Display keyset 200 [37,96] [38,98]

Display status update 200 [40,99] [41,101]

Figure 30. Aircraft controller schedulability results (times are in the form [min,max])

We can see from the table above that the process set is schedulable using preemptive

scheduling. An analysis of a similar process set using RMS showed that only the first eight
processes were guaranteed to meet their deadlines [60]. From our results we can also iden-

162 A Quantitative Approach to the Formal Verification of Real-Time Systems

An Aircraft Controller

tify many important parameters of the system. For example, the response time is usually

very low for best-case computations, but it is also good for the worst case. Most processes

take less than half their required time to execute. This indicates that the system is still not

close to saturation, although the total CPU utilization is high.

Notice also that preemption does not have a big impact on response times. Except for the

most critical process, all others maintain their schedulability if a non-preemptive sched-

uler is used. Moreover, we can see that although non-preemption causes weapon release to

miss its deadline, but by a relatively small amount. If a preemptive scheduler were expen-

sive, reducing the CPU utilization slightly might make the complete system schedulable

without changing the scheduler. By having such information the designer can easily assess

the impact of various alternatives to improve the performance, without having to change

the implementation.

As another example of how the designer can use these results, we can analyze the response

time for the display graphic subsystem. The periodicity of this subsystem is 80 ms and a

shorter period might be desired to make motion look continuous. However, the response

time of this process can be as high as 44 ms. Changing the period to 40 ms would most

likely make it miss its deadline. The designer may choose to decrease it to 50 ms, but this

is still close to the response time, and the increased load might make the system unschedu-

lable. The model can be easily changed to check this hypothesis, but our analysis shows

that it is unlikely that this modification will preserve schedulability.

The effect of preemption on execution time can be assessed as well. We have computed

the maximum and minimum execution times for processes after they have been granted

the CPU. If minimum and maximum are not the same, the process can be preempted after

starting execution. For example, the display graphic subsystem can finish in as little

as 7 ms and in as much as 14 ms after it starts execution. In other words, preemption over-

head can be as high as 7 ms for this subsystem. The NAV steering subsystem has a mini-

mum of 1 ms and a maximum of 44 ms. This means that other processes can delay it for

43 ms. It is clear that NAV steering can be preempted for a longer time than display

A Quantitative Approach to the Formal Verification of Real-Time Systems 163

Analyzing Real Systems

graphic, since it has lower priority. Our results, however, allow us to determine how much
longer it can be preempted. As an important variation of this property, we can compute the

priority inversion time for high priority processes. This can help identify the reasons why

a system is not predictable, and help correct its behavior.

We examine one more property of this particular model. The weapons system is critical to

the aircraft. It is very important that it responds quickly to the pilot's command. However,

when a pilot presses the firing button, many subsystems are involved in identifying and

responding to this event. We can determine its response time using the algorithms

described previously. By computing the minimum and maximum times between pressing
the fire button and the execution of the weapon release process we are able to determine if
the weapon system responds quickly enough to satisfy the aircraft requirements. In our
example, the minimum time between detecting that the fire button has been depressed and
the end of execution of weapon release is 120 ms. The maximum time is 167 ms, not
accounting for the possibility that the firing sequence may be aborted, or that weapon aim
may lose contact with the target. Of course external events have to be added to these num-
bers, such as the time between pressing the button and it being detected by display keyset,
or the time it takes to actually fire the weapons. But the designer of the system now knows
how much time the firing protocol adds to these external factors in the actual airplane.

In this example we have shown that Verus allows the analysis of complex realistic sys-
tems. We have been able to determine the schedulability of the system and understand its
behavior in detail. We have also been able to produce information about its behavior that
might have been difficult to obtain using other methods, such as the response time of the

weapons subsystem.

164 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Robotics System

6.3 A Robotics System

One application of real-time systems that is becoming increasingly common is in robotics.
Guaranteeing that tasks are executed within their expected deadline is critical for the

integrity of a robot and for the success of its mission. The computation of quantitative
properties can assist in validating such systems. The example discussed in this section is

derived from the one in [38]. It describes a real robot used in nuclear reactors to measure
the shapes of pipes by moving around them with a distance sensor. The robot architecture
has three subsystems, motor, measurement and command. The motor subsystem controls

the robot movements and position. The function of the measurement subsystem is to acti-

vate and control the distance sensors. Finally, the command subsystem
receives commands from the communication link and sends them to the appropriate tasks.

r "
1

1
i

i

1

1
L

r
1 C

i

 1

n 1 111 UlUl WVJ11U 1
servo

read
1
1

sensor

read

1

1

V" k i = * = •
 i

—i

servo

control

1
1
1

sensor

control

1

*l 1
L

r
1 c omm. reai

j

control

vars

 j

-i
omm. proc

comm.

read

comm.

exec.

v" . k t
comm.

interpr.

comm.

process
i _ \^_ . i —A i

- buffer

—►Dal a flow >Control flow

Figure 31. Robot architecture

A Quantitative Approach to the Formal Verification of Real-Time Systems 165

Analyzing Real Systems

Each subsystem consists of a set of tasks. The motor subsystem contains one task,

motor_control. Its function is to receive data from sensors in the servo motors, and actuate

them. The task consists of two subtasks, servojread and servo_control. The first one is an

interrupt routine that reads data directly from the physical devices. The second one pro-

cesses these data and outputs control signals to the motors at a lower priority. The

measurement subsystem has two tasks, sensorjread and sensorjzontrol. The first task

reads data from the distance sensors and preprocesses it. This information is then sent

to sensorjcontrol, which processes it further and outputs the results to a remote system to

be analyzed. Finally, the command subsystem also has two tasks. The commandjread task

receives commands from the communication link and interprets them. It consists of two

subtasks: an interrupt routine, followed by a second subtask that has a lower priority. The

final task of this subsystem is commandjprocess. Its first subtask receives the

command interpreted by commandjread, and the second one then executes the command.

Control variables that are updated by this subtask are used to communicate commands to

all Other subsystems.

All tasks are periodic, and their timing requirements reflect the characteristics of the envi-

ronment in which the robot works and the robot's expected response time. These require-

ments are summarized in the table below. Each task is presented as a sequence of

components, each with a different execution time and priority. A component may corre-

spond to a subtask, or subtasks may be split in more than one component due

to synchronization. For example, the first components of both motor_control and

command_read correspond to their interrupt routines and execute at high priorities.

Synchronization accounts for the other components. For example, the last component of

commandjprocess updates control variables that will be used by other tasks. Interference

from other tasks is avoided by accessing those variables at a high priority level. The other

components have been created to reflect the synchronization pattern between

processes sharing data (in this case between sensorjread and sensor jzontrol), and

between command_read and commandjprocess. Priority inheritance protocols have been

used to avoid priority inversion [66]. These protocols change the priority of the tasks at

synchronization points, thus dividing the tasks into components.

166 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Robotics System

Task Period Exec. Times Deadline Priorities

Ci c2 c3 Pi P2 P3

Motor control 40 1 5 - 40 10 7 -

Sensor read 100 10 5 5 100 4 8 4

Sensor control 50 8 12 - 50 5 8 -

Command read 200 10 20 3 200 9 2 3

Command process 400 2 12 10 400 3 1 6

Figure 32. Timing requirements for aircraft controller

The Analysis of the Robotics System
Computing response times for all processes generated the results in the table below. This
table shows that the task set is schedulable. Moreover, the maximum execution times of
many tasks are close to their deadlines. This indicates a high load on the system; it is
unlikely that adding more tasks to the task set would produce a schedulable system. This

information allows the designer to optimize or fine tune the system.

Task Deadline Exec, times

min max

Motor control 40 6 16

Sensor read 100 45 95

Sensor control 50 20 49

Command read 200 181 190

Command process 400 219 223

Figure 33. Schedulability analysis for original system

Using the results computed by our algorithms, we have been able to suggest changes to the
design and to analyze the effects of such changes. In the original design sensor_read gen-

A Quantitative Approach to the Formal Verification of Real-Time Systems 167

Analyzing Real Systems

erates data that are used by sensor „control. However, the two tasks execute independently

of one another. In some cases sensor „control might execute even if data are not yet avail-

able. In this case, sensor „control uses data generated by the previous instantiation of
sensor_read, which may be obsolete. We have changed the system to avoid this problem
and have analyzed the resulting design. The modification consists of making the termina-
tion of sensor „read trigger the execution of sensor „control. Care must be taken, however,
because the processes involved have different periods; sensor „read executes every

100 ms, while sensor „control executes every 50 ms. We change the system so that
sensor „read signals the execution of sensor „control every 100 ms, but sensor „control also

executes independently 50 ms after sensorjread runs. In this case one instantiation of

sensor „control is synchronized with sensorjread while the other is independent. The

schedulability analysis of the modified example is given in the table:

Task Deadline Exec, times

min max

Motor control 40 6 16

Sensor read 100 20 36

Sensor control 50 21 121

Command read 200 91 91

Command process 400 96 296

Figure 34. Schedulability analysis for modified system

The new design is not schedulable, since sensor „control can take up to 121 ms to execute.
We can use the same quantitative algorithms to find out more about the behavior of the
system and to correct the problem. A more detailed analysis reveals that the two instantia-
tions of sensor „control have very distinct behaviors. Whenever executing periodically
(and independent of sensorjread), sensor „control takes between 21 and 121 ms to finish.
However, whenever executing after sensorjread, it takes exactly 26 ms to execute in the
modified model. This shows that the periodic execution of sensor „control is the bottle-
neck of the system. One solution to the problem is simply removing the periodic instantia-

168 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Robotics System

tion of sensor„control This solution was easily implemented, and the schedulability

analysis is presented in table:

Task Deadline Exec, times

min max

Motor control 40 6 16

Sensor read 100 20 36

Sensor control 50 26 26

Command read 200 91 91

Command process 400 70 270

Figure 35. Schedulability analysis for final system

The system is again schedulable, but now sensor„control executes only once every

100 ms. Is this a satisfactory solution? Again, we can use the same algorithms to analyze

the modified design. By computing the time between the end of the execution of

sensor„read and the beginning of sensor„control we can verify if data produced by the

first task is being consumed timely by the second one. In the modified model this time is

between 1 and 7 ms, meaning that data produced by sensor „read are promptly consumed

by sensor „control. Therefore we can conclude that in spite of changing the periodicity of

sensor„control we are still maintaining predictability. The condition counting algorithms

have also been useful in analyzing the performance of this model. We have been able to

verify how the old periodicity of sensor„control relates to the new model. We can consider

all execution paths from the time sensorjread starts until sensor„control finishes as the

active period for the measurement subsystem. During such a period, how many times can

the 50 ms time-out occur? In other words, how many times would sensor„control be acti-

vated using the original periodicity during an active period? The result is from 1 to 3

times. We conclude that the modified system satisfies the original timing constraints, even

though it has a lighter load.

A Quantitative Approach to the Formal Verification of Real-Time Systems 169

Analyzing Real Systems

In this example we have been able to analyze the behavior of the robot from several per-

spectives. We have determined that it would meet its deadlines, but that it was inefficient.
We have discussed how to optimize the design and then we have been able to analyze the

performance of the modified design.

6.4 A Medical Monitoring System

This section presents a patient monitoring system derived from the one presented in [31].

It is a realistic example that models many features existing in actual systems. The example

has been expanded to show how the algorithms described in this paper can be used to ana-
lyze models of industrial complexity. The resulting model for this example has more than

1013 states but its timing characteristics can be computed in a few seconds.

i 1

Patient condition
detection

Blood pressure

Acquire [—► Filter f^-—^ Heart rate f

Figure 36. The patient monitoring system

The system consists of a set of processes and can be seen in figure 36. The acquire process
is the only periodic process in the system, all others are aperiodic. Acquire executes every

170 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Medical Monitoring System

20 ms, and its function is to read data from sensors monitoring the patient. Usually, the

data read by the sensors contain spurious information. In order to eliminate erroneous

data, the output of acquire is sent to the filter process. Filter is an aperiodic process. It is

triggered whenever data are read from the sensors, that is, whenever acquire finishes its

execution. The filter process is dependent on data generated by the acquire process. The

same dependency pattern is also used to trigger execution of the other aperiodic processes.

After filter executes, its results are analyzed by the patient condition detection processes.

Filter preprocesses the data generated, and may decide to start the detection processes or

not, depending on the data available. Three such processes are modelled in this example to

detect abnormal conditions in the patient's blood pressure, heart rate and temperature. The

detection processes can issue an alarm after analyzing the data. If the alarm process is

executed, it also starts the audio process that generates the actual alarm signal. Finally, the

filter process also sends its data to the display and recorder processes, that display the data

on the screens and record it in some non-volatile media for future analysis. The execution

times for the processes in the system can be summarized as follows. The acquire process

executes for 1 ms, the filter executes for 3 ms, and all other processes execute for 2 ms.

Most processes in this system are aperiodic in nature. Because of this, methods such as the

rate monotonic scheduling [50,59,68] cannot be directly used to analyze this process set.

For example, the assignment of priorities to processes is more complex than in the peri-

odic case which can use the RMS algorithms. In this example priorities have been

assigned heuristically, and quantitative algorithms have been used to investigate the effi-

ciency of the assignment. Initially, the priority order defined was, from the highest to the

lowest priority process: acquire, filter, blood_pressure, heartjrate, temperature, display,

recorder, alarm, and audio.

The aperiodic nature of the processes also makes it difficult to determine the schedulabil-

ity requirements. Except for the acquire process, no other process has a deadline. Never-

theless, the timing constraints of the system can be easily identified. The acquire process

has a period and a deadline of 20 ms. The timing constraints for the other processes can be

defined in several ways. A straightforward way is to require that all processes to finish

A Quantitative Approach to the Formal Verification of Real-Time Systems 171

Analyzing Real Systems

before the next execution of acquire. Our algorithms can determine if the process set satis-

fies this constraint by computing minimum and maximum times between the moment
when acquire requests execution and the moment when each process terminates. How-

ever, this requirement can be too restrictive in some cases. Overlapping the execution of
consecutive process instantiations is acceptable if the response time can still be bounded.

The algorithms described in this paper can determine response times for all processes by

checking if there exists a process that can execute for an unbounded amount of time. If

there is such a process, then the system is not schedulable. If not, these results allow the

designers to check if the response times are acceptable. Both results have been computed

for this example, and are presented in the following table.

Process Period Execution Times

(1) (2)

min max min max

acquire 20 1 1 1 1

filter - 4 4 3 3

blood pressure - 6 oo 2 2

heart rate - 6 oo 2 4

temperature - 6 oo 2 6

display - 6 12 2 8

recorder - 8 14 4 10

alarm - 12 oo 6 10

audio - 14 oo 2 2

(1) Minimum and maximum times between the start of acquire and the end of execution of the process. If

the maximum time is less than the period of acquire, then the process will finish execution before the

next instantiation of acquire is started.

(2) Minimum and maximum times between the start and end of execution of each process. If this time is

less than infinity, then the system is schedulable.

Figure 37. Response times for the original medical monitor

172 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Medical Monitoring System

In some cases, it is possible that the condition detection processes are never executed, as

well as the alarm and audio processes. Because of this, the maximum time from the start

of acquire until these processes finish is infinity. However, in many situations it is impor-

tant to know the maximum time until an event provided it will occur. We can change the

model to reflect that an alarm will always be issued, and compute such information. In this

model, we determined that from the moment acquire reads abnormal data until the alarm

sounds, less than 18 ms will elapse (16 ms for alarm and 18 ms for audio).

The results produced by our algorithms can provide more information about the behavior

of the system than just determining its schedulability. For example, we can see from the

data presented that the alarm and audio processes are the ones with highest response

times. However, sounding the alarm is a critical function that should not be postponed by

other functions such as recording the data on tape. One way to avoid this problem is by

raising the priority of alarm to avoid interference from less important processes and com-

pute the response times for the modified model. We raised the priority of the alarm pro-

cess by changing the priority order to: acquire, filter, alarm, blood_pressure, heart_rate,

temperature, display, recorder, and audio. The response times were computed again, and

the results are presented in the table below:

Process Period Execution Times

(1) (2)

min max min max

acquire 20 1 1 1 1

filter - 4 4 3 3

blood pressure - 6 oo 2 2

heart rate - 6 oo 2 6

temperature - 6 oo 2 10

display - 6 18 2 14

recorder - 8 20 4 16

alarm - 8 oo 2 2

audio - 14 oo 6 oo

A Quantitative Approach to the Formal Verification of Real-Time Systems 173

Analyzing Real Systems

Some unexpected results can be seen in this table. The system is no longer schedulable.

The audio process can execute for an unbounded amount of time. By comparing the two

tables we see that the maximum execution times of most processes increased. But no addi-

tional load has been added to the system. In order to verify why this behavior was occur-

ring we used a counterexample. By expressing the property that the audio process would

always finish execution, we were able to produce a counterexample which showed that

this property was false. The execution trace revealed the following execution sequence

leading to the problem:

acquire;

filter,

blood_pressure;

alarm;

heartjrate;

alarm;

temperature;

alarm;

display;

recorder;

acquire;

filter;

We can see from the trace above that the problem is caused by the fact that alarm executes

three times for the same instantiation of acquire when all detection processes find abnor-

malities. This causes an overload in the system making it unschedulable. The reason this

did not happen before was that every time a detection process triggered the alarm process,

it requested execution, but it would only execute after all detection processes executed.

One execution responded to all alarm conditions. A simple solution to this problem is to

lower the priority of alarm and change the design so that multiple alarms are handled cor-

rectly. The final priority order is: acquire, filter, bloodjpressure, heartjrate, temperature,

174 A Quantitative Approach to the Formal Verification of Real-Time Systems

The PCI Local Bus

alarm, display, recorder, and audio. The results computed using this priority order showed

that the system was schedulable.

The condition counting algorithms can also be used to analyze the behavior of the system.

If the designer believes that the alarm process is being blocked by less important pro-

cesses, he or she can use the condition counting algorithms to quantify this effect. For

example, we can compute how much time is spent on the execution of the display or the

recorder processes while alarm is requesting execution. The parameters of mincount and

maxcount can be specified as follows. The initial state is the start of alarm, the final state is

the end of execution of alarm, and the condition to be counted is the processor granted to

either display or recorder. Using the first priority order presented, the time spent on dis-

play and recorder while alarm is blocked is 4 ms. With the last priority order this time is

zero, as expected.

6.5 The PCI Local Bus

The PCI Local Bus [45,46] is a high performance bus architecture that can have a data

width of 32 or 64 bits. It has been designed by Intel to be used in its latest family of pro-

cessors. Intel's goal is to offer a fast bus design at low cost that will accommodate current

as well as future systems. PCI buses can be found in systems based on Alpha, Pentium and

Pentium Pro processors. The majority of Pentium based systems manufactured today

employ the PCI bus.

A typical PCI system can be seen below. The most important subsystems connected to the

bus are the processor, a video controller, a SCSI controller, and an ISA bridge controller,

which connects the PCI bus to a slower ISA bus. Modems, floppy disk controllers and

other low speed components are connected to the ISA bus. Main memory and the second-

ary cache are connected directly to the processor using a PCI-memory-processor bridge.

Other components can be added to the system. Usually expansion slots are provided for

this purpose.

A Quantitative Approach to the Formal Verification of Real-Time Systems 175

Analyzing Real Systems

Processor | Video Ctrl

< PCI Local Bus >

ISA bridge | SCSI Ctrl

T
ISA bus

~+ ►

Figure 38. The PCI local bus

Each of the subsystems shown above is allowed to request access to the bus and issue

transactions. Slave subsystems are also supported; such subsystems respond to transac-

tions, but do not issue them. A simplified PCI transaction is shown in the figure below.

The request for a transaction starts when a subsystem asserts its request line REQ. It then

waits until being granted the bus by the arbitration subsystem, which is indicated by the

assertion of the GNT line. This phase is known as the arbitration phase. The next phase is

the bus acquisition phase. The bus might not be idle when the new master is determined

because the previous transaction may still be transferring data. Another transaction cannot

be issued before all data has been transferred. The bus is idle whenever both signals

FRAME and IRDY are deasserted in the same cycle, giving access of the bus to the new

master. At this point the master asserts the FRAME signal, indicating the end of the bus

acquisition phase and the beginning of a transaction. It also has to assert the signal IRDY,

meaning that it is ready to send (or receive) data. The bus master has to wait for the target

subsystem to respond by asserting its TRDY signal. This indicates that the target is ready

to supply (or receive) data. The time interval between the start of a transaction and the

assertion of the TRDY signal is called the target response phase. Data transfer starts when

both IRDY and TRDY are asserted. One clock cycle before the end of the data transfer

phase the FRAME signal is deasserted. At the next cycle both IRDY and TRDY are deas-

176 A Quantitative Approach to the Formal Verification of Real-Time Systems

The PCI Local Bus

serted, and the bus becomes idle. In addition, transactions can be cancelled in various situ-

ations. This feature of the protocol is discussed in more detail later.

i i 1

REQ 1/ K 1
1 1

GNT i/ |V_ 1
1

FRAME s~ \ 1
1 1

1
IRDY / ^ 1

_J
TRDY '/ \

i 1

1
1

1
1

> «« » < -►-<-

Arbitration
Bus

acquisition
Target

response
Data

transfer

Figure 39. A transaction in the PCI Bus

Arbitration in the PCI bus is implemented by a two phase arbiter as seen in the next fig-

ure. Each arbiter bank chooses among its incoming requests, and sends its decision to the

following bank. The output of bank2 will be the new bus master. The decision is based

on the policy signal, which can be set to fixed priority or round-robin. If all policies are

set to the same value, the global arbitration policy will be either fixed priority or round-

robin. However, mixed arbitration policies are possible by combining different policies in

the banks. Our model for the PCI bus follows the description above. Arbitration policies

can be set to any possible combination, allowing mixed arbitration policies. However, in

our model we must make some restrictions to the protocol described. For example, we

must restrict the amount of data being transferred in one transaction. If this restriction is

not implemented, no bounds on response time can be determined. In our model a single

transaction can transfer between 1 and 16 cache lines of data. Our analysis will show how

the information generated by this model can be used to determine the response time for

models without this restriction. A similar approach has to be taken with the possibility of

cancelling an ongoing transaction. Again, in order to prevent starvation, we must bound

A Quantitative Approach to the Formal Verification of Real-Time Systems 177

Analyzing Real Systems

the number of times a transaction may be cancelled. Our final model for the PCI bus has

107 reachable states out of a state space of 1018 states. The transition relation uses less

than 10,000 BDD nodes, and the verification was completed in minutes.

Policy-

SIOREQ ,

REQ0-

REQ1.

REQ2.

CPUREQ.

REQ3.

Policy

Policy

Figure 40. The PCI arbiter

Verification and Performance Analysis of the PCI Bus

Our analysis concentrates on the verification of issues such as transaction termination and
arbitration fairness as well as on transaction performance. Being able to estimate the
response time of a transaction is extremely important in any bus design, especially in one
which has high performance a primary goal. The bus data transfer rate and the overhead
imposed by arbitration and communication protocols are examples of parameters involved
in such an analysis. If those parameters cannot be determined, it will not be possible to
design an optimized system that fully utilizes the available resources.

Moreover, the PCI bus is a good alternative for critical applications in which a bounded
response time is vital. However, if the worst case response time of a transaction in the PCI
bus hasn't been specified, such applications will most likely be implemented using other

178 A Quantitative Approach to the Formal Verification of Real-Time Systems

The PCI Local Bus

bus architectures. By bounding the worst time response of a transaction we hope to help

application designers to evaluate the use of the PCI bus more accurately.

The correctness of the PCI bus protocol can be verified using the CTL model checker. For

example, absence of starvation for bus access and transaction termination can be verified

by the following formulas:

AG (REQ -» AF GNT)

AG (start_transaction -> AF end_transaction)

The properties above show that the response time of PCI transactions is bounded, but they

give no indication of their performance. We will use the quantitative algorithms described

to determine the response time for transactions. The results of our quantitative analysis

also determine the correctness of the algorithm, for example, a transaction always finishes

if its maximum response time is less than infinity.

In our performance analysis we will follow the structure of the protocol by computing the

response time for each phase of the transaction separately. In this way we can have a better

understanding of the behavior of the protocol. By computing the latency of each phase we

are able to assert the efficiency of each step in the protocol and obtain the global behavior

by adding individual figures. Results will be grouped into two categories, total bus acqui-

sition latency and total transaction latency. The first category corresponds to the total time

between a request being made on the bus and the subsystem actually being able to use the

bus. The second category represents the total usage of the bus, that is, the time between

asserting the FRAME signal until the end of data transfer. The table below shows the

response times when the arbitration policy is set to round-robin in all banks and transac-

tion cancelling is not allowed. Notice that in all cases discussed in this paper the latency

for the data transfer phase varies between 1 and 16 clock cycles, there is no overhead asso-

ciated with it. For that reason, this column will not be shown in the tables.

A Quantitative Approach to the Formal Verification of Real-Time Systems 179

Analyzing Real Systems

Bus Bus Total bus Target Total
Master Arbitration Acquis. acquis. response trans.

ISA [1,95] [1,18] [2,113] [1,2] [2,18]

SCSI [1,95] [1,18] [2,113] [1,2] [2,18]

Video [1,38] [1,18] [2,56] [1,2] [2,18]

Processor [1,38] [1,18] [2,56] [1,2] [2,18]

Figure 41. Response times for global round-robin policy

From the table above we can see two interesting properties of the system. The total trans-

action latency is at most 18 clock cycles, and in this case 16 clock cycles of data are trans-

mitted. This means that once a master is able to use the bus, it can send data very

efficiently. Another characteristic of the protocol is reflected on the bus acquisition times.

The maximum of 18 cycles corresponds to one transaction. After being granted the bus the

new master may have to wait for at most one more transaction to complete. This shows

that once the bus is granted to a master, it will not be granted to another before the first one

issues its transaction. Therefore no starvation can occur after a master is granted the bus.

This property can be verified by the following CTL formula:

AG (GNT -> A[GNT U FRAME])

A more intriguing result can be seen in the arbitration latency results. The first two sub-

systems can take almost twice as long to access the bus as the others. In a round-robin

environment, all subsystems should be granted equal usage of the resource, but this is not

true in our example. By analyzing the execution traces produced by our tools we are able

to determine the reason for the unfair access to the bus. The problem arises from the con-

nection of the request lines to the arbiter as seen below. The ISA bridge and the SCSI con-

troller are connected together to bankO, while the video and the processor subsystems are

alone in their banks. If bus traffic is high, the ISA bridge and the SCSI subsystems may

have to wait for the one another before their request reaches bank2. Subsequently they

180 A Quantitative Approach to the Formal Verification of Real-Time Systems

The PCI Local Bus

may have to wait for subsystems connected to the other banks to execute before being

granted the bus. In other words, they compete in both levels of arbitration, while the other

subsystems only compete in the last level. This causes the worst time latency to be approx-

imately twice as long for these subsystems. We can conclude from these results that two

level arbitration may have a different behavior than an equivalent one level arbiter. In this

case the problem is caused by an asymmetric connection of request lines.

Policy -

ISAbus ,

SCSI-

Policy

Video.

Policy

CPU

Figure 42. Connections of request lines to the arbiter

We can also use these results to analyze the overhead imposed by the communication pro-

tocol on the transaction time. We have already seen that after asserting the FRAME signal

there is an overhead of 2 clock cycles. This overhead is independent of the transfer size. If

a transaction is allowed to transfer more than 16 cache lines of data at once, the total utili-

zation of the bus will increase. The designers of the bus can use this information to deter-

mine which is the best transfer size for a given system. The following two formulas have

been used to verify the above statements:

AG (FRAME -> AF<2 (state = DATA_TRANSFER))

AG ((state = DATA_TRANSFER) ->

A[state = DATA_TRANSFER U end_transaction])

A Quantitative Approach to the Formal Verification of Real-Time Systems 181

Analyzing Real Systems

The first formula states that at most two cycles after the transaction starts, it will enter the
data transfer phase. The second formula states that once a transaction is in the data transfer

phase, it will continue in this phase until its end.

The overhead associated with arbitration can be computed in a similar way. It is more

complex, however, because the arbitration latency depends not only on the transaction

time, but also on the number of active request lines. We use the condition counting algo-

rithms to uncover more details about this problem. We compute the number of transactions

issued on the bus between the time a master requests access and the time it is granted the

bus. Up to 5 transactions can be issued during this period for the ISA bridge and the SCSI
subsystems, and up to 2 transactions can be issued for the video and processor subsystems.
Total transaction time for each of these intermediate transactions is 18 clock cycles. By
comparing the total effective data transfer time with the maximum arbitration time, we can
see that each intermediate transaction has an arbitration time of one clock cycle. These
results are also valid for the video and processor subsystems. We can conclude that the

arbitration latency can be computed by the formula:

Arbitration_Latency = n* (TransactionJLatency + 1),

where n is the maximum number of intermediate transactions that can be issued between a
request and the corresponding grant (computed with the condition counting algorithms).

This formula does not depend on maximum data transfer size.

The above results assume a global round-robin policy. The behavior of the system under a
fixed priority arbitration policy has also been studied. The ISA bridge is the highest prior-
ity subsystem on the bus. Its response time is much lower in the fixed priority configura-
tion than in the round-robin one. However, all other subsystems may starve, since the ISA
bridge can continuously issue transactions. Notice that only the arbitration time, but not
the transaction time, is affected by the arbitration policy. These response times can be used
by the designer to check if the performance of the PCI bus is adequate for a critical appli-
cation. Other combinations of arbitration policies are possible, but are not presented here

for the sake of brevity.

182 A Quantitative Approach to the Formal Verification of Real-Time Systems

The PCI Local Bus

Bus Bus Total bus Target Total
Master Arbitration Acquis. acquis. response trans.

ISA [1,19] [1,18] [2,37] [1,2] [2,18]

SCSI [1,~] [1,18] [2,~] [1,2] [2,18]

Video [1H [1,18] [2H [1,2] [2,18]

Processor [1H [1,18] [2H [1,2] [2,18]

Figure 43. Response times for global fixed priority policy

The model described above allows a detailed analysis of the behavior of the PCI bus pro-

tocol. Some features of the actual bus, such as parity or data width, have been abstracted

from our model, since they do not affect the timing of transactions. However, there are

other features that do affect timing such as the possibility of a transaction being cancelled.

Errors on the bus may occur, the target may be slow, or unable to produce the data. For

example, a transaction requesting data from the ISA bus will most likely experience a long

delay, simply because of the relative speeds of the ISA and PCI buses. In the model

described above this feature has been abstracted out by the assumption that the target of a

transaction responds immediately. A more realistic model that allows transactions to be

cancelled has also been implemented.

In order to account for long delay responses and aborted transactions we introduce the

concept of transaction cancellation in our model. Transactions may be cancelled any time

they are in progress. Transaction cancellations model the fact that in the actual PCI bus

whenever a target is unable to answer for a long time, it aborts the transaction, which is

reissued later. We model this situation by cancelling the transaction and restarting it imme-

diately by issuing another request. However, reissuing the transaction immediately would

not correctly model the response time of a very slow target. To accommodate this situa-

tion, in our model a cancelled transaction is restarted as many times as necessary to

accommodate the target response time. Using the algorithms described we compute the

overhead caused by cancelling and restarting a transaction, and use this result to determine

the number of retries for the response delay of a given target.

A Quantitative Approach to the Formal Verification of Real-Time Systems 183

Analyzing Real Systems

Moreover, unlimited cancellations may cause starvation. Therefore, in order to compute
the worst time response, we must limit the number of cancellations allowed. A cancella-

tion brings the bus to the idle state, as can be verified by the following CTL formula:

AG (ABORT -» AX BUS_IDLE)

As a consequence, consecutive cancellations have the same behavior, because a cancella-

tion brings the system into the same state as before the transaction. Therefore, the total

overhead caused by n cancellations is n times the overhead of a single cancellation. There-

fore, it suffices to consider the situation in which at most one cancellation occurs. The

results for a global round-robin arbitration policy in the presence of at most one transac-

tion cancellation are presented below.

Bus Bus Total bus Target Total
Master Arbitration Acquis. acquis. response trans.

ISA [1,95] [1,18] [2,113] [1,6] [2,132]

SCSI [1,95] [1,18] [2,113] [1,6] [2,132]

Video [1,38] [1,18] [2,56] [1,6] [2,75]

Processor [1,38] [1,18] [2,56] [1,6] [2,75]

Figure 44. Response times for global round-robin policy, maximum one cancel

In this table we can see that arbitration latency is not affected by transaction cancellations.
The reason is that whenever a transaction is cancelled the current bus master releases the
bus and becomes last in the round-robin queue. On the other hand, total transaction
latency increases significantly. The execution trace of the transaction with the worst

latency shows the following sequence of events (for the ISA bridge subsystem):

• A transaction starts but is cancelled just before completion, after 17 clock cycles.

• Another request is made to complete it in the next cycle (one extra clock cycle).

• An arbitration sequence of 79 cycles follows.

184 A Quantitative Approach to the Formal Verification of Real-Time Systems

The PCI Local Bus

• A bus acquisition phase starts and takes 17 clock cycles.

• The transaction starts again, completing after 18 cycles.

The arbitration sequence appearing in item 3 is the same as in the worst case, except that

the request is made when the bus is already idle because of the cancellation. The differ-

ence of 16 clock cycles corresponds to one maximum data transfer phase done by another

bus master, as shown by the counterexample for the worst case arbitration latency (not

presented for brevity). The total delay caused by the first three items is the equivalent of a

worst case arbitration latency plus two clock cycles, caused by the cancellation. A bus

acquisition phase and a transaction latency phase, in which no cancellation occurs,

account for the last 35 cycles. We can see then that the overhead imposed by a transaction

cancellation consists of a worst case arbitration latency, a maximum bus acquisition phase,

a maximum transaction latency (without cancellations) and one extra clock cycle. Again,

this formula applies for the video and processor subsystems. These results may be used to

estimate the performance of an implementation of the PCI in the presence of transaction

aborts. The formula derived gives the overhead for one transaction cancellation, and can

be extended to many cancellations as well. In this manner, the worst response time in var-

ious configurations of the system can be computed.

To summarize the results of our analysis, we have been able to:

• Model the PCI Local bus protocol and verify its correctness. In the round-robin case no

starvation of subsystems occur, and transactions always finish, even in the presence of

limited cancellations.

• Determine the minimum and maximum latencies for each phase of the protocol, and

show which phases are affected by changes in the parameters (such as arbitration policy

and presence of cancellations).

• Compute response times independent of specific values for the data transfer phase.

• Determine response time in the presence of limited transaction aborts using the condi-

tion counting algorithms described.

A Quantitative Approach to the Forma! Verification of Real-Time Systems 185

Analyzing Real Systems

These results allow the designers of the protocol to understand its actual behavior and how

this behavior changes when parameters of the system are modified. We believe that this is
valuable information when verifying and optimizing a new hardware system. This exam-
ple shows that our method can be used to analyze the performance of modern hardware

designs that have very complex behavior.

6.6 A Distributed Real-Time System

In this section we analyze a distributed real-time system. This is a complex and realistic
application, its components are existing systems and protocols that are actually used in
many real situations. The example consists of three main components, a FDDI network, a
multiprocessor connected to this network and one of the processors in the multiprocessor,

the control processor.

The FDDI network is a 100Mb/s local/metropolitan area network that uses a token ring

topology [4]. It has gained popularity recently, particularly in real-time applications, since
it allows communication time to be bounded. There are several stations connected to the
network in the system. They generate multimedia and sensor data sent to the control pro-
cessor, as well as additional traffic inside the network. There is a deadline of 100 ms
between the generation of multimedia data and its processing by the control processor.

The traffic in the network has been modeled as proposed in [69]. Under this protocol, sta-
tions choose a target token rotation time (TTRT). Each station is then allocated a synchro-
nous capacity such that if all stations use all their synchronous bandwidth, the token
returns to a station at most 2 * TTRT time units after leaving it [69]. In this example the
TTRT is 8. Traffic is modeled such that every 16 units (2 * TTRT) the stations utilize the
network as follows: video station, 6 units; audio station, 1 unit; and remainder network
traffic, 8 units (in this example we will analyze only the behavior of video and audio.
Therefore all the remaining traffic in the network has been grouped together).

186 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Distributed Real-Time System

Sensors Audio Video

+ 1
FDDI network

Network
interface

Tracking
processor

i'

1L

i L

Futi

Sensor
processor

Control
processor

Figure 45. Distributed System Architecture

In the multiprocessor, four active processors are connected through a Futurebus+ [44].
The first is the network interface, it receives data from the network and sends it to the con-
trol processor. The network interface uses the bus for 7 ms at each time. A sensor proces-
sor reads data from sensors every 40 ms. It buffers the data and sends it once every four
readings to the tracking processor. The tracking processor processes the data and sends it
to the control processor. Both sensor and tracking data use the bus for 3 ms each. The
deadline for sensor data to be processed is 785 ms. Access to the bus is granted using pri-
ority scheduling. Priorities are assigned according to the rate-monotonic scheduling the-
ory, processors with shorter periods have higher priority.

In the control processor there are several periodic tasks. The timing requirements for these
tasks can be seen in figure 46. Priority scheduling is also used in the control processor,
with priorities assigned by the rate-monotonic theory. Two of the tasks in the control pro-
cessor have special functions, T3 processes sensor data, and T5 processes multimedia data.

A Quantitative Approach to the Formal Verification of Real-Time Systems 187

Analyzing Real Systems

Process Period Exec. Time

*i 100 5

*2 150 78

^3 160 30

T4 300 10

*5 100 3

Figure 46. Timing requirements for tasks in the control processor (times in ms)

Each of the components of the system (FDDI, network and control processor) has been
implemented separately. No data is actually exchanged between the components in the
model. Data have been abstracted out of the model, because data dependencies would sig-

nificantly increase the size of the model and the complexity of verification.

However, while simplifying verification, abstractions can also introduce invalid execution
sequences. The constraints imposed by data dependencies significantly reduce the number
of execution sequences that can actually be reached. In an abstract model such dependen-
cies do not exist. In this example, selective quantitative analysis has been used to ensure
that only execution sequences that are valid have been considered during verification.

The first deadline to be checked is the deadline of 100 ms between the generation of mul-
timedia data (signaled by variable video. start) and its processing in the control pro-
cessor by process t5 (signaled by variable t5. finish). Ideally, we would like to

compute these time bounds using MIN{MAX} [video. start, t5. finish]. How-
ever, since in our model we have abstracted out synchronization between tasks, this would
consider paths in the model in which t5 finishes executing just after video, without
going through the network interface. This execution sequence corresponds to t5 process-

ing data generated by previous instantiations of video.

188 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Distributed Real-Time System

In order to identify the valid paths in the model, we have computed the same time bounds

as before, but now considering only paths that satisfy the constraint F inter-

face . finish. Unfortunately, this is still not accurate enough, as it allows for execution

sequences in which interface executes before video finishes, or after t5 starts. The

actual formula used to characterize the correct paths is

F (video.finish && F (interface.finish && F t5.start))

This formula guarantees that the events video. finish, interface. finish and

t5 . start must occur, and in that order. Moreover, by using bounded selective quantita-

tive analysis we also guarantee that these events must happen after video. start and

before t5. finish. We are then able to eliminate from consideration all false paths

introduced in the model, and determine the correct response times.

Using this formula for computing the time between video, start and t5 . finish

resulted in the interval [24, 96], that is, the video traffic is schedulable. The audio traffic

has been analyzed in a similar way, and will not be presented here for brevity. The

response time for the audio station is in the interval [16,96].

This analysis also uncovered an ambiguity in the system description. Initially, we assumed

that process x2 processed the multimedia traffic in the control processor. In the original

description this point is not clear. However, the same analysis using x2 instead of t5 pro-

duces the interval [100, 148], which is clearly not schedulable. Discussions with the

authors of the original paper then clarified the issue, and in the model we introduced pro-

cess T5 to handle multimedia traffic.

Finally, we must check the deadline between a sensor reading in the sensor processor and

the processing of the data by t3 in the control processor. This deadline is 785 ms. In order

to determine how long it takes for data to go from the sensor processor to the control pro-

cessor we must use a similar approach to the one described. The direct computation of

MIN{MAX} [sensor_observation, t3 . finish] searches on paths in which data

does not have time to go through all the steps in the protocol.

A Quantitative Approach to the Formal Verification of Real-Time Systems 189

Analyzing Real Systems

We must, therefore, compute this time provided that a LTL formula describing the correct

data path is satisfied. The formula that must be satisfied in this case is

F (sensor.finish && F (track.start &&

F (track.finish && F t3.start)))

By using this formula we have obtained the time between sensor observation and x3 pro-

cessing to be in the interval [197,563], well within the deadline. However, by looking into

the design we noticed a potential source for inefficiencies in the Futurebus. A counterex-

ample for the longest response time confirmed our speculations.

In this system both sensor and tracking processors access the bus periodically, sending
data every 160 ms. In the counterexample, however, data required two periods of 160 ms
to reach the control processor. It was sent by the sensor processor to the tracking proces-
sor, but this processor would only send it to the control processor in the next period.
Before this time, data was blocked at the tracking processor because of its periodicity. Fur-
ther investigation of the model showed that this was caused by the priority order in which
processors accessed the bus. The tracking processor had a higher priority than the sensor

processor. This means that when the sensor processor sends data to the tracking processor,
it had already used the bus for this period, and would only request access again in 160 ms.

The rate-monotonic theory was used to assign priorities to bus requests, and it states that
shorter periods have higher priorities. In this case however, both processors have the same
period, and their relative priority is irrelevant (from the rate-monotonic perspective). From
the data transfer pattern, though, it seemed that exchanging the order of these two proces-
sors would yield a better result. We modified the design by changing the priorities, and the
response time became [37,403], an improvement of almost 50% in the response time.

Moreover, we have been able to compare the performance of both designs using interval
model checking. A very serious problem with real-time systems is priority-inversion. It
occurs when high-priority tasks are blocked by low priority ones. This can happen even
with priority scheduling, in most cases caused by synchronization. Determining the exist-

190 A Quantitative Approach to the Formal Verification of Real-Time Systems

A Distributed Real-Time System

ence of priority inversion is extremely important in the analysis of real-time systems. In

our example we have been able to check this parameter using interval model checking.

We want to determine the existence of priority inversion between the time the sensor pro-

duces data until the time the tracking processor processes it. Priority inversion occurs in

this interval if the bus is idle or the lower priority process is executing. The lower priority

process is either the sensor or tracking processor, depending on the priority order. In both

cases the network interface has higher priority, because it has a shorter period.

Using interval model checking we have been able to check the LTL formula

G ! (bus_idle | | bus_granted = lower_priority) on the intervals between

the sensor processor finishing sending data and the tracking processor sending its data to

the control processor. The original design showed the existence of priority inversion, as

expected. In the modified design, on the other hand, the formula above is true in all inter-

vals under consideration, even though it is clearly false outside these intervals. This shows

that the modified design is optimal with respect to the prioritized utilization of the bus.

The modified design has a better response time, and is clearly preferred in this application.

But in other applications this might not be true. There might be cases, for example, in

which the tracking processor sends data to the sensor processor. In those cases the modi-

fied design is worse than the original one. This again shows how selective quantitative

analysis and interval model checking can be used to analyze the different facets of a sys-

tem. The designer can choose to optimize the behavior of a critical application, even if at

the expense of less critical ones. It would be easy to adapt this analysis to different data

patterns, and optimize the response time for any other application. In this example we con-

sidered the data path from the sensor to the control as the most important one.

This example shows how the proposed method can assist in understanding the behavior of

complex systems. We have been able not only to check properties of the whole system, but

also to analyze specific execution sequences of interest. This allowed us to uncover subtle-

ties about the application that might have been very difficult to discover otherwise.

A Quantitative Approach to the Formal Verification of Real-Time Systems 191

Analyzing Real Systems

192 A Quantitative Approach to the Formal Verification of Real-Time Systems

Chapter 7 Conclusions

This work presents a new method for specifying and verifying real-time systems. The sys-

tem being verified is specified in the Verus language and then compiled into a state-transi-

tion graph. Algorithms derived from symbolic model checking are used to compute

quantitative timing information about the model. There are several advantages to the new

approach. For example, the Verus language has been especially designed to allow a

straightforward description of the temporal characteristics of programs, simplifying the

expression of real-time systems in general. Also, the quantitative information produced by

the verification algorithms not only allows the designer to check for its temporal and func-

tional correctness, but also provides insight into how well the system works, or how seri-

ously it fails. The algorithms presented generate more detailed information about the

behavior of a system than previous methods and can be used in several different ways to

analyze a real-time system.

The method has been applied to several actual systems, and, in each case, we have been

able to produce useful information that can enable the designers to understand the behav-

ior better and to improve the system. These examples demonstrate the versatility and

power of the method, and can be used to emphasize important aspects of the Verus

approach:

A Quantitative Approach to the Formal Verification of Real-Time Systems 193

Conclusions

• The priority inversion example has demonstrated that the synchronous composition
model used in Verus does not restrict the applicability or expressive power of the tool. It
may be argued that some applications are inherently asynchronous, and therefore not

well suited for the proposed method. In this example, however, it is shown how stutter-

ing can be used to introduce asynchronism into the model even without sacrificing the

synchronous composition model.

• The aircraft controller example illustrates the importance of the efficiency of the sym-

bolic algorithms used in Verus. As discussed, one of the most restrictive factors in for-

mal verification is the number of concurrent processes in the system, due to the
complexity of the parallel composition algorithm. In this example we have shown that
systems with a large number of processes can be efficiently verified by Verus. The air-
craft controller has 15 concurrent processes, but quantitative information about the sys-

tem can be computed in seconds using a 486 computer.

• The versatility of the method can be seen in the robotics and medical monitoring exam-
ples. Because of their design, neither example can be directly analyzed by the rate
monotonic algorithms. In fact, a complex extension to RMS has been developed to han-

dle systems such as the robotics controller presented [38]. The quantitative analysis
performed cannot be directly done using standard model checking. In Verus, however,
both systems have been implemented and verified in a straightforward way. This shows
how Verus can easily accommodate several different types of systems and properties.

Moreover, in both cases the analysis performed has uncovered inefficiencies in the
design and suggested optimizations. Results such as these can be very difficult to obtain
using other tools. After modifying the design, the same algorithms have been used to
show that the performance of the system has improved. These examples show the ver-
satility of the specification language, and the usefulness of the results produced by the

verification algorithms.

• The PCI local bus analysis has shown that not only real-time systems can benefit from

the new method. This example shows how timing properties of non real-time systems
can be analyzed, and how those results can be used to help understand the behavior of
systems that are not usually associated with real-time.

194 A Quantitative Approach to the Formal Verification of Real-Time Systems

Another important issue has been discussed in the analysis of the PCI bus. Even though
limited to finite-state systems, Veras can produce results that can be extrapolated to
larger classes of systems. In this example restrictions to the model have been imple-

mented to ensure that the model is finite. Later the results generated by the analysis

have been extrapolated to different configurations of the PCI that are not limited by

those restrictions. This shows that the results produced by the algorithms can be even
more general and useful than a superficial verification might lead to believe. Sometimes
a careful analysis can produce information that might have seen impossible to obtain
due to the characteristics of the method, as has been the case in this example.

• The distributed real-time system analyzed shows a combination of all these features
into an analysis that would be very difficult to perform using other tools. It is a large
complex system that exceeds the complexity of systems that can be verified using con-
tinuous time tools. It cannot be analyzed directly by RMS, because RMS does not
allow a complete analysis of distributed systems. Moreover the quantitative informa-
tion produced would be very difficult if not impossible to obtain using techniques such

as model checking.

In Veras, however, we have been able to model the system naturally. The quantitative
algorithms have been applied directly to the model. In this case they also uncovered
inefficiencies and suggested optimizations to the design. Finally, the efficiency of the

algorithms allowed results to be produced in minutes in all cases.

These examples show that Veras is an efficient and useful tool for analyzing real-time sys-
tems. It can perform analyses that are impossible or extremely difficult to do using previ-
ous methods. The technique can be efficiently applied to complex real-time and non real-
time systems and can assist in determining their correctness and in understanding their
behavior. It can ultimately contribute to the implementation of more efficient and reliable

systems.

A Quantitative Approach to the Formal Verification of Real-Time Systems 195

Conclusions

Future Work
This work can be extended in many directions. For example, the examples discussed pre-

viously show that many different types of analyses can be performed. The verification of
more examples is the key to developing new ways to produce and analyze information
about the behavior of real-time and non real-time systems. Particularly, analyzing systems

in different areas might prove useful in finding new ways to look at the information pro-

duced. Examples of areas in which Verus may be useful are flexible manufacturing, other

types of industrial controllers, circuit design and software systems.

An important extension of the method is the implementation of non-unit transitions in the
model. Allowing transitions that take longer than one time unit to occur can help increase
the efficiency of verification. Less states in the model are generated because long transi-
tions are not expanded into a sequence of unit transitions. A model that allows transitions
to take time t to occur, where t is within a defined time range has been developed [12].
Research is needed, however, to implement an efficient parallel composition algorithm for

this model.

An important aspect of a model with non-unit transitions is the fact that with each transi-
tion is associated an entity, in this case a time range. But other models can be derived from
this one by associating transitions with other entities. One useful example is associating
probabilities with transitions. This would allow the computation of the probability of
reaching a certain state, or the probability of reaching a steady-state. A probabilistic model
checker has many important applications, but much research is still needed in this area.

Another potentially important extension to Verus comes from noticing that two different
types of variables exist in the model. Variables that model the control or data in the sys-
tem, and variables that model time. The behavior of these two sets of variables can be very
different. Time variables are manipulated in a restricted way, usually by resetting or incre-
menting their value. There may be more efficient representations for those variables that
optimize the representation of these operations. One promising candidate representation is

196 A Quantitative Approach to the Formal Verification of Real-Time Systems

BMDs [7]. BMDs are very efficient for representing arithmetic operations, and can per-

haps increase the efficiency of the verification on Veins.

Several other extensions can also be of benefit, such as extensions to the Verus language,
or the exploration of symmetry in the models. We believe that this work can be only the
beginning of a new research area on formal verification of real-time systems using quanti-

tative algorithms. We hope to be able to continue this work and explore some of these

research directions, generating in the end an even more efficient and useful tool.

A Quantitative Approach to the Formal Verification of Real-Time Systems 197

Conclusions

198 A Quantitative Approach to the Formal Verification of Real-Time Systems

Chapter 8 References

[1] R. Alur, C. Courcourbetis, and D. Dill. Model-checking for real-time systems. In Pro-

ceedings of the 5th Symposium on Logics in Computer Science, pp. 414-425, 1990.

[2] R. Alur and D. Dill. Automata for modeling real-time systems. In Lecture Notes in

Computer Science, 17th ICALP. Springer-Verlag, 1990.

[3] R. Alur and T. Henzinger. Logics and models of real-time: a survey. In: Lecture Notes
in Computer Science, Real Time: Theory in Practice. Springer-Verlag, 1992.

[4] ANSI Std. FDDI Token Ring Media Access Control, s3t95/83-16 edition, 1986.

[5] G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
design, semantics, implementation. In: Science of Computer Programming, vol. 19, 1992.

[6] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-

actions on Computers, C-35(8), 1986.

[7] R. E. Bryant and Y. A. Chen. Verification of arithmetic functions with binary moment
diagrams. Technical Report CMU-CS-94-160, Carnegie Mellon University, 1994.

[8] J. R. Burch, E. M, Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. In VLSI 91, Edinburgh, Scotland, 1990.

A Quantitative Approach to the Formal Verification of Real-Time Systems 199

References

[9] J. R. Burch, E. M. Clarke, K. L. McMillan and D. L. Dill. Sequential circuit verifica-
tion using symbolic model checking. In 27th ACM/IEEE Design Automation Conference,,

June 1990.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model

checking: 1020 states and beyond. In Proceedings of the 5th Symposium on Logics in Com-

puter Science, 1990.

[11] S. V. Campos. The priority inversion problem and real-time symbolic model check-
ing. Technical Report CMU-CS-93-125, Carnegie Mellon University, 1993.

[12] S. V. Campos and E. M. Clarke. Real-time symbolic model checking for discrete time
models. In First AMASTInternational Workshop in Real-Time Systems, 1993.

[13] S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing
quantitative characteristics of finite-state real-time systems. In IEEE Real-Time Systems

Symposium, 1994.

[14] S. V. Campos, E. M. Clarke, W. Marrero and M. Minea. Timing analysis of industrial
real-time systems. In: Workshop on Industrial-strength Formal specification Techniques,

1995.

[15] S. V. Campos, E. M. Clarke, W. Marrero and M. Minea. Verifying the performance of
the PCI local bus using symbolic techniques. In: ICCD, 1995.

[16] S. V. Campos, E. M. Clarke, W. Marrero and M. Minea. Veras: a tool for quantitative
analysis of finite-state real-time systems. In: Workshop on Languages, Compilers and

Tools for Real-Time Systems, 1995.

[17] Z. Chaochen, C. Hoare and A. Ravn. A calculus of durations. Information Processing

Letters, 40, 5, 1991.

[18] D. Clarke, H. Ben-Abdallah, I. Lee, H. Xie and O. Sokolsky. XVERSA: an integrated
graphical and textual toolset for the specification and analysis of resource-bound real-time
systems. In: Proceedings of the 8th Conference on Computer-Aided Verification, Lecture
Notes in Computer Science 1102. Springer-Verlag, 1996.

200 A Quantitative Approach to the Formal Verification of Real-Time Systems

[19] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In Logic of Programs: Workshop, Yorktown Heights, NY, May

1981. LNCS 131, Springer-Verlag, 1981.

[20] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM TOPLAS, 8(2):244-263,

1986.

[21] E. Clarke, O. Grumberg, K. Hamaguchi. Another look at LTL model checking. Tech-
nical Report CMU-CS-94-114, Carnegie Mellon University, School of Computer Science,

1994.

[22] E. Clarke, O. Grumberg, and H. Hamaguchi. Another look at LTL model checking.
In: Proceedings of the Sixth Conference on Computer-Aided Verification, Lecture Notes in
Computer Science 818, pages 415-427. Springer-Verlag, 1994.

[23] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L.

A. Ness. Verification of the Futurebus+ cache coherence protocol. In Proceedings of the

11th CHDL, 1993.

[24] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In Proceed-

ings of the 19th ACM Symposium on Principles of Programming Languages, 1992.

[25] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In: REX'93 School/Workshop: A Decade of Concurrency, Nordwijkerhout, The
Netherlands, June 1993.

[26] O. Coudert, C. Berthet, and J. Madre. Verification of synchronous sequential
machines based on symbolic execution. In Automatic Verification Methods for Finite State
Systems, International Workshop, Grenoble,France, Lecture Notes in Computer Science,
vol. 407, Springer-Verlag, June, 1989.

[27] P. Clements, C. Heitmeyer, G. Labaw, and A. Rose. MT: a toolset for specifying and
analyzing real-time systems. In IEEE Real-Time Systems Symposium, 1993.

A Quantitative Approach to the Formal Verification of Real-Time Systems 201

References

[28] R. Cleaveland, P. Lewis, S. Smolka and O. Sokolsky. The concurrency factory: a
development environment for concurrent systems. In: Proceedings of the 8th Conference
on Computer-Aided Verification, Lecture Notes in Computer Science 1102. Springer-Ver-

lag, 1996.

[29] R. Cleaveland and S. Sims. The NCSU concurrency workbench. In: Proceedings of
the 8th Conference on Computer-Aided Verification, Lecture Notes in Computer Science

1102. Springer-Verlag, 1996.

[30] D. Dill. The Mur(p verification system. In: Proceedings of the 8th Conference on
Computer-Aided Verification, Lecture Notes in Computer Science 1102. Springer-Verlag,

1996.

[31] R Drongowski. Software architecture in real-time systems. In IEEE Workshop on
Real-Time Applications, 1993.

[32] E.A. Emerson and Chin Laung Lei. Modalities for Model Checking: Branching Time
Strikes Back. In Twelfth Symposium on Principles of Programming Languages, January,

1985.

[33] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal rea-
soning. In Lecture Notes in Computer Science, Computer-Aided Verification. Springer-

Verlag, 1990.

[34] J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu and M. Sighireanu.
CADP: a protocol validation and verification toolbox. In: Proceedings of the 8th Confer-
ence on Computer-Aided Verification, Lecture Notes in Computer Science 1102. Springer-

Verlag, 1996.

[35] A. N. Fredette and R. Cleaveland. RTSL: a language for real-time schedulability
analysis. In IEEE Real-Time Systems Symposium, 1993.

[36] R. Gerber and I. Lee. A proof system for communicating shared resources. In IEEE
Real-Time Systems Symposium, 1990.

202 A Quantitative Approach to the Formal Verification of Real-Time Systems

[37] P. Le Guernic, M. Le Borgne, T. Gautier and C. Le Maire. Programming real time
applications with Signal. Technical Report 1446, INRIA, Rennes, 1991.

[38] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing analysis for fixed-priority
scheduling of hard real-time systems. IEEE Transactions on Software Engineering, 20(1),

1994.

[39] R. Hardin, Z. Har'El and R. Kurshan. COSPAN. In: Proceedings of the 8th Confer-
ence on Computer-Aided Verification, Lecture Notes in Computer Science 1102. Springer-

Verlag, 1996.

[40] C. Heitmeyer and N. Lynch. The generalized railroad crossing: a case study in formal
verification of real-time systems. IEEE Real-Time Systems Symposium, 1994.

[41] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for

real-time systems. In Proceedings of the 7th Symposium on Logic in Computer Science,

1992.

[42] T. Henzinger, P. Ho, and H. Wong-Toi. HyTech: the next generation. In IEEE Real-

Time Systems Symposium, 1995.

[43] G. Holzmann and D. Peled. The state of Spin. In: Proceedings of the 8th Conference
on Computer-Aided Verification, Lecture Notes in Computer Science 1102. Springer-Ver-

lag, 1996.

[44] IEEE Standard Board and American National Standards Institute. Standard Back-
plane Bus Specification for Multiprocessor Architectures: Futurebus+, ansi/ieee std 896.1

edition, 1990.

[45] Intel Corporation. 82378 System I/O (SIO) — PCI Local Bus, 1993.

[46] Intel Corporation. PCI Local Bus Specification, 1993.

[47] F. Jahanian and D. Stuart. A method for verifying properties of modechart specifica-
tions. In: IEEE Real-Time Systems Symposium, 1988.

A Quantitative Approach to the Formal Verification of Real-Time Systems 203

References

[48] M. Joseph and P. Pandya, Finding response times in a real-time system. In: The Com-

puter Journal, 29(5), 390-394,1986.

[49] J. P. Lehoczky. Real-time resource management techniques. Encyclopedia of Soft-

ware Engineering. John-Wiley & Sons, 1994.

[50] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary dead-
lines. In IEEE Real-Time Systems Symposium, 1990.

[51] J. P. Lehoczky and L. Sha. Performance of real-time bus scheduling algorithms. ACM

Performance Evaluation Review, 14,1986.

[52] J. P. Lehoczky, L. Sha and Y. Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In IEEE Real-Time Systems Symposium, 1989.

[53] J. P. Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda. Fixed priority scheduling the-
ory for hard real-time systems. In Foundations of Real-Time Computing - Scheduling and
Resource Management. Kluwer Academic Publishers, 1991.

[54] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of peri-
odic, real-time tasks. Performance Evaluation, 2, 1982.

[55] H. Lewis. A logic of concrete time intervals. In Proceedings of the 5th Symposium on

Logic in Computer Science, 1990.

[56] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In: Proceedings of the twelfth Conference on Principle of Pro-
gramming languages, January 1985.

[57] O. Lichtenstein, A. Pnueli and L. Zuck. The Glory of the Past. In Proc. Conf. Logics
of Programs, Lecture Notes in Computer Science 193, Springer-Verlag, 1985.

[58] B. Lin and A. R. Newton. Efficient symbolic manipulation of equivalence relations
and classes. In: Proc. of the Int. Workshop on Formal Methods in VLSI Design, 1991.

204 A Quantitative Approach to the Formal Verification of Real-Time Systems

[59] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20(1), 1973.

[60] C. Locke, D. Vogel, and T. Mesler. Building a predictable avionics platform in Ada: a
case study. In IEEE Real-Time Systems Symposium, 1991.

[61] Z. Manna and A. Pnueli. The Anchored Version of the Temporal Framework. In Lin-
ear Time, Branching Time and Partial Order in Logics and Models for Concurrency, Lec-
ture Notes in Computer Science 354, Springer-Verlag, 1989.

[62] K. L. McMillan. Symbolic model checking - an approach to the state explosion prob-
lem. Ph.D. thesis, SCS, Carnegie Mellon University, 1992.

[63] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems.
In Lecture Notes in Computer Science, Real-Time: Theory in Practice. Springer-Verlag,

1992.

[64] D. T. Peng and K. G. Shin. A new performance measure for scheduling independent
real-time tasks. Technical Report, Real-Time Computing Laboratory, University of Michi-

gan, 1989.

[65] A. Pnueli. The Temporal Semantics of Concurrent Programs. In Proceedings of the
eighteenth conference on Foundation of Computer Science, 1977.

[66] R. Rajkumar. Task synchronization in real-time systems. Ph.D. thesis, ECE, Carnegie
Mellon University, 1989.

[67] Y. Ramakrishna, P. Melliar-Smith, L. Moser, L. Dillon, and G. Kutty. Really visual
temporal reasoning. In IEEE Real-Time Systems Symposium, 1993.

[68] L. Sha, M. H. Klein, and J. B. Goodenough. Rate monotonic analysis for real-time
systems. In Foundations of Real-Time Computing - Scheduling and Resource Manage-
ment. Kluwer Academic Publishers, 1991.

[69] L. Sha, R. Rajkumar and S. Sathaye. Generalized rate-monotonic scheduling theory:
a framework for developing real-time systems. In Proceedings of the IEEE, Jan 1994.

A Quantitative Approach to the Formal Verification of Real-Time Systems 205

References

[70] B. Sprunt. Aperiodic task scheduling for real-time systems. Ph. D. dissertation,
Department of Electrical and Computer engineering, Carnegie Mellon University, 1990.

[71] J. K. Strosnider. Highly responsive real-time token rings. Ph. D. dissertation, Depart-
ment of Electrical and Computer engineering, Carnegie Mellon University, 1988.

[72] G. Thuau and D. Pilaud. Using the declarative language Lustre for circuit verifica-
tion. In: Workshops in Computing — Designing Correct Circuits, Springer-Verlag, 1990.

[73] H. Touati, H. Savoj, B. Lin, R. Brayton and A. Sangiovanni-Vincentelli. Implicit state
enumeration of finite state machines using BDDs. In IEEE International Conference on

Computer-Aided Design, 1990.

[74] M. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program
Verification. In Proceedings of the First Symposium on Logic in Computer Science, 1986.

[75] F. Wang. Timing behavior analysis for real-time systems. In Proceedings of the Tenth
Symposium on Logic in Coomputer Science, 1995.

[76] G. Winskel. The Formal Semantics of Programming Languages, an Introduction. The

MIT Press, 1994, pp. 135-139.

[77] J. Yang, A. K. Mok, and F. Wang. Symbolic model checking for event-driven real-
time systems. In IEEE Real-Time Systems Symposium, 1993.

[78] X. Zhao. Personal communication.

206 A Quantitative Approach to the Formal Verification of Real-Time Systems

Index

air traffic control system 142
aircraft controller 27,157

analysis 162
model 160
response times 164
schedulability 162

algorithms
interval model checking 120
lazy composition 136
maximum count 24,101
maximum delay 24,92
minimum count 24,97
minimum delay 24, 90
optimized maximum count 106
optimized minimum count 102
parallel composition 136
selective quantitative analysis over intervals 117
selective quantitative analysis over paths 116
synchronous composition in Verus 136

assignment statement 75
asynchronous composition 136

B
BDD 36
binary decision diagrams 36
bounded priority inversion 143
bounded until 88

continuous time 17
control flow in Verus 67
core language semantics 71
counterexamples 32
CTL 33

data types in Verus 52
deadline statement 57,79
discrete time 17
distributed real-time system 186

analysis 189
dynamic scheduling 43

exception handling 58, 80
expressions, semantics 73
extension language semantics 78
external variables 60,73,75

FDDI network 186
fixpoint 77
fixpoint characterization 39
Futurebus 187

graphs in Veras 65

C language 21,51
computation tree logic 33
concurrency semantics 82
constrain operator 138

I
if statement 77
initial state set 70
integer size 61

A Quantitative Approach to the Formal Verification of Real-Time Systems 207

Index

interleaving composition 136
internal variables 60,73,75
interval model checking 24,109,120

L
languages

C 21,51
Esterel 21
Lustre 21
Modechart 21
Signal 21
SMV 21
Veras 21,51

lazy composition 20,136
linear-time temporal logic 25,110, 111
LTL 25,110, 111
LTL tableau 111

M
maximum count algorithm 24,101
maximum delay algorithm 24,92
medical monitoring system 170

analysis 171
optimization 174

minimum count algorithm 24,97
minimum delay algorithm 24,90
model checking 31
model checking algorithm 40

N
nondeterminism in Veras 54
nonpreemptive vs preemptive schedulers 163

optimized maximum count algorithm 106
optimized minimum count algorithm 102

parallel composition
in model checking 39
in Veras 56

parallel composition algorithm 136
partitioned transition relations 137
PCIlocalbus 175

analysis 178
arbitration 177
transaction abort 183
transactions 176

periodic statement 56, 79
preemptive vs non preemptive schedulers 163
prioritized composition 83
priority inheritance 144
priority inversion 141
priority statement 60
process instantiation in Veras 56,64

producer/consumer example 52

quantitative algorithms 24
quantitative analysis 89

rate monotonic scheduling theory 16
reachability analysis 17
real-time CTL 23, 87
region graph 17
RMS

aperiodic tasks 47
exact schedulability analysis 45
task synchronization 46

robotics controller 27,165
analysis 167

RTCTL 23, 87

schedulers in Veras 84
scheduling

dynamic 43
static 44

select statement 54
selective quantitative analysis 24,109,189
selective quantitative analysis over intervals 117
selective quantitative analysis over paths 116
semantics

concurrency 82
core language 71
expressions 73
extension language 78
statements 71, 75

semantics of Veras 65
statements

assignment 75
deadline 57,79
handler 58, 80
if 77
periodic 56,79
priority 60
select 54
semantics 71,75
wait 54,67, 75
while 77

state-transition graphs in Veras 20, 65
static scheduling 44
stuttering 56, 83, 152
symbolic model checking 35
synchronous composition 82,136
synchronous composition in Veras 136

tableau for LTL 111

208 A Quantitative Approach to the Formal Verification of Real-Time Systems

temporal logic 31,33
temporal logic model checking 15,31
transition relation, representation 66

U
unbounded priority inversion 143

V
Veras

and model checking 41
and RMS 48
characteristics 18
contributions and comparisons 27
datatypes 52
internal and external variables 60,73,75
nondeterminism 54
parallel composition 56
process instantiation 56, 64
schedulers 84
semantics 65
state-transition graphs 65
synchronous composition algorithm 136
syntax 60
syntax of extensions 63
syntax of the core language 61

Veras language 21,51

W
wait counters 69
wait graphs 67
wait statement 54,67,75
while statement 77

A Quantitative Approach to the Formal Verification of Real-Time Systems 209

Index

210 A Quantitative Approach to the Formal Verification of Real-Time Systems

